Bernstein多项式神经网络RUL分析的多尺度多样性指数

M. Landauskas, L. Saunoriene, M. Ragulskis
{"title":"Bernstein多项式神经网络RUL分析的多尺度多样性指数","authors":"M. Landauskas, L. Saunoriene, M. Ragulskis","doi":"10.1145/3459104.3459188","DOIUrl":null,"url":null,"abstract":"This paper employs multiscale feature extraction based on Simpson's diversity index for predicting remaining useful life (RUL) of bearings. Being a measure of variety of elements in the given time series, Simpson's diversity index (SDI) acts as a feature which is assumed to be different for time series of different quality. Thus, RUL is considered to be function of multiscale SDI in this paper. Features are mapped to RUL with modified Tensor product Bernstein polynomial (TPBP) network. The aim of this paper is to test SDI based feature extraction together with modified TPBP network for in the context of RUL analysis.","PeriodicalId":142284,"journal":{"name":"2021 International Symposium on Electrical, Electronics and Information Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Diversity Index for RUL Analysis with Bernstein Polynomial Neural Networks\",\"authors\":\"M. Landauskas, L. Saunoriene, M. Ragulskis\",\"doi\":\"10.1145/3459104.3459188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper employs multiscale feature extraction based on Simpson's diversity index for predicting remaining useful life (RUL) of bearings. Being a measure of variety of elements in the given time series, Simpson's diversity index (SDI) acts as a feature which is assumed to be different for time series of different quality. Thus, RUL is considered to be function of multiscale SDI in this paper. Features are mapped to RUL with modified Tensor product Bernstein polynomial (TPBP) network. The aim of this paper is to test SDI based feature extraction together with modified TPBP network for in the context of RUL analysis.\",\"PeriodicalId\":142284,\"journal\":{\"name\":\"2021 International Symposium on Electrical, Electronics and Information Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Symposium on Electrical, Electronics and Information Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3459104.3459188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Electrical, Electronics and Information Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459104.3459188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用基于Simpson多样性指数的多尺度特征提取方法预测轴承剩余使用寿命。辛普森多样性指数(Simpson's diversity index, SDI)是对给定时间序列中元素多样性的度量,它是对不同质量的时间序列假定为不同的特征。因此,本文认为RUL是多尺度SDI的函数。利用改进的张量积伯恩斯坦多项式(TPBP)网络将特征映射到规则学习中。本文的目的是测试基于SDI的特征提取和改进的TPBP网络在规则分析中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiscale Diversity Index for RUL Analysis with Bernstein Polynomial Neural Networks
This paper employs multiscale feature extraction based on Simpson's diversity index for predicting remaining useful life (RUL) of bearings. Being a measure of variety of elements in the given time series, Simpson's diversity index (SDI) acts as a feature which is assumed to be different for time series of different quality. Thus, RUL is considered to be function of multiscale SDI in this paper. Features are mapped to RUL with modified Tensor product Bernstein polynomial (TPBP) network. The aim of this paper is to test SDI based feature extraction together with modified TPBP network for in the context of RUL analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Integration of Blockchain Technology and IoT in a Smart University Application Architecture 3D Moving Rigid Body Localization in the Presence of Anchor Position Errors RANS/LES Simulation of Low-Frequency Flow Oscillations on a NACA0012 Airfoil Near Stall Tuning Language Representation Models for Classification of Turkish News Improving Consumer Experience for Medical Information Using Text Analytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1