基于CPD-GEVD的时延估计应用于有误差的张量GNSS阵列

Daniel Valle de Lima, J. Costa, F. Antreich, R. K. Miranda, G. D. Galdo
{"title":"基于CPD-GEVD的时延估计应用于有误差的张量GNSS阵列","authors":"Daniel Valle de Lima, J. Costa, F. Antreich, R. K. Miranda, G. D. Galdo","doi":"10.1109/CAMSAP.2017.8313098","DOIUrl":null,"url":null,"abstract":"Safety-critical applications (SCA), such as autonomous driving, and liability critical applications (LCA), such as fisheries management, require a robust positioning system in demanding signal environments with coherent multipath while ensuring reasonably low complexity. In this context, antenna array-based Global Navigation Satellite Systems (GNSS) receivers with array signal processing schemes allow the spatial separation of line-of-sight (LOS) from multipath components. In real-world scenarios array imperfections alter the expected array response, resulting in parameter estimation and filtering errors. In this paper, we propose an approach to time-delay estimation for a tensor-based GNSS receiver that mitigates the effect of multipath components while also being robust against array imperfections. This approach is based on the Canonical Polyadic Decomposition by a Generalized Eigenvalue Decomposition (GPD-GEVD) to recover the signal for each impinging component. Our scheme outperforms both the Higher-Order Singular Value Decomposition (HOSVD) eigenfilter and Direction of Arrival and Khatri-Rao factorization (DoA/KRF) approaches, which are state-of-the-art tensor-based schemes for time-delay estimation, particularly when array imperfections are present.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Time-Delay estimation via CPD-GEVD applied to tensor-based GNSS arrays with errors\",\"authors\":\"Daniel Valle de Lima, J. Costa, F. Antreich, R. K. Miranda, G. D. Galdo\",\"doi\":\"10.1109/CAMSAP.2017.8313098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Safety-critical applications (SCA), such as autonomous driving, and liability critical applications (LCA), such as fisheries management, require a robust positioning system in demanding signal environments with coherent multipath while ensuring reasonably low complexity. In this context, antenna array-based Global Navigation Satellite Systems (GNSS) receivers with array signal processing schemes allow the spatial separation of line-of-sight (LOS) from multipath components. In real-world scenarios array imperfections alter the expected array response, resulting in parameter estimation and filtering errors. In this paper, we propose an approach to time-delay estimation for a tensor-based GNSS receiver that mitigates the effect of multipath components while also being robust against array imperfections. This approach is based on the Canonical Polyadic Decomposition by a Generalized Eigenvalue Decomposition (GPD-GEVD) to recover the signal for each impinging component. Our scheme outperforms both the Higher-Order Singular Value Decomposition (HOSVD) eigenfilter and Direction of Arrival and Khatri-Rao factorization (DoA/KRF) approaches, which are state-of-the-art tensor-based schemes for time-delay estimation, particularly when array imperfections are present.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

安全关键型应用(SCA),如自动驾驶,责任关键型应用(LCA),如渔业管理,需要在要求苛刻的信号环境中具有相干多路径的强大定位系统,同时确保合理的低复杂性。在这种情况下,具有阵列信号处理方案的基于天线阵列的全球导航卫星系统(GNSS)接收器允许从多路径组件中实现视线(LOS)的空间分离。在实际场景中,阵列的不完美会改变预期的阵列响应,导致参数估计和滤波错误。在本文中,我们提出了一种基于张量的GNSS接收机的时延估计方法,该方法可以减轻多径分量的影响,同时对阵列缺陷具有鲁棒性。该方法基于正则多进分解,通过广义特征值分解(GPD-GEVD)来恢复每个碰撞分量的信号。我们的方案优于高阶奇异值分解(HOSVD)特征滤波器和到达方向和Khatri-Rao分解(DoA/KRF)方法,这些方法是最先进的基于张量的时延估计方案,特别是当阵列存在缺陷时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time-Delay estimation via CPD-GEVD applied to tensor-based GNSS arrays with errors
Safety-critical applications (SCA), such as autonomous driving, and liability critical applications (LCA), such as fisheries management, require a robust positioning system in demanding signal environments with coherent multipath while ensuring reasonably low complexity. In this context, antenna array-based Global Navigation Satellite Systems (GNSS) receivers with array signal processing schemes allow the spatial separation of line-of-sight (LOS) from multipath components. In real-world scenarios array imperfections alter the expected array response, resulting in parameter estimation and filtering errors. In this paper, we propose an approach to time-delay estimation for a tensor-based GNSS receiver that mitigates the effect of multipath components while also being robust against array imperfections. This approach is based on the Canonical Polyadic Decomposition by a Generalized Eigenvalue Decomposition (GPD-GEVD) to recover the signal for each impinging component. Our scheme outperforms both the Higher-Order Singular Value Decomposition (HOSVD) eigenfilter and Direction of Arrival and Khatri-Rao factorization (DoA/KRF) approaches, which are state-of-the-art tensor-based schemes for time-delay estimation, particularly when array imperfections are present.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved DOA estimators using partial relaxation approach Energy efficient transmission in MIMO interference channels with QoS constraints Restricted update sequential matrix diagonalisation for parahermitian matrices Sparse Bayesian learning with dictionary refinement for super-resolution through time L1-PCA signal subspace identification for non-sphered data under the ICA model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1