基于页位的日志序列异常检测方法

X. Yan, W. Zhou, Yun Gao, Zhang Zhang, Jizhong Han, Ge Fu
{"title":"基于页位的日志序列异常检测方法","authors":"X. Yan, W. Zhou, Yun Gao, Zhang Zhang, Jizhong Han, Ge Fu","doi":"10.1109/CloudCom.2014.70","DOIUrl":null,"url":null,"abstract":"With the popularity of various software applications in cloud computing, software exception becomes an important issue. How to detect the exceptions more quickly seems to be crucial for the software service company. To solve the above problem, this paper presents an efficient log anomaly detection method named PADM (Page Rank-based Anomaly Detection Method) based on the graph computing algorithm. In this method, the logs are transformed into a graph to represent the complex relationship between the log records, then we design an extended Page Rank algorithm based on the graph to get the importance score for each log. After that, we compare the scores to that of the training logs to determine whether they are abnormal or not. Finally, we compare PADM with other anomaly detection methods on the real logs, and the results show that it outperforms the currently widely used mechanisms with higher accuracy, lower time complexity and better scalability.","PeriodicalId":249306,"journal":{"name":"2014 IEEE 6th International Conference on Cloud Computing Technology and Science","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"PADM: Page Rank-Based Anomaly Detection Method of Log Sequences by Graph Computing\",\"authors\":\"X. Yan, W. Zhou, Yun Gao, Zhang Zhang, Jizhong Han, Ge Fu\",\"doi\":\"10.1109/CloudCom.2014.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the popularity of various software applications in cloud computing, software exception becomes an important issue. How to detect the exceptions more quickly seems to be crucial for the software service company. To solve the above problem, this paper presents an efficient log anomaly detection method named PADM (Page Rank-based Anomaly Detection Method) based on the graph computing algorithm. In this method, the logs are transformed into a graph to represent the complex relationship between the log records, then we design an extended Page Rank algorithm based on the graph to get the importance score for each log. After that, we compare the scores to that of the training logs to determine whether they are abnormal or not. Finally, we compare PADM with other anomaly detection methods on the real logs, and the results show that it outperforms the currently widely used mechanisms with higher accuracy, lower time complexity and better scalability.\",\"PeriodicalId\":249306,\"journal\":{\"name\":\"2014 IEEE 6th International Conference on Cloud Computing Technology and Science\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 6th International Conference on Cloud Computing Technology and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudCom.2014.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 6th International Conference on Cloud Computing Technology and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom.2014.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

随着云计算中各种软件应用的普及,软件异常成为一个重要的问题。对于这家软件服务公司来说,如何更快地发现异常似乎至关重要。为了解决上述问题,本文提出了一种基于图计算算法的高效日志异常检测方法PADM (Page rank based anomaly detection method)。该方法将日志转换成一个图来表示日志记录之间的复杂关系,然后在此图的基础上设计一个扩展的Page Rank算法来获得每条日志的重要性评分。之后,我们将分数与训练日志的分数进行比较,以确定它们是否异常。最后,将PADM与其他异常检测方法在真实日志上进行了比较,结果表明,PADM具有更高的精度、更低的时间复杂度和更好的可扩展性,优于目前广泛使用的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PADM: Page Rank-Based Anomaly Detection Method of Log Sequences by Graph Computing
With the popularity of various software applications in cloud computing, software exception becomes an important issue. How to detect the exceptions more quickly seems to be crucial for the software service company. To solve the above problem, this paper presents an efficient log anomaly detection method named PADM (Page Rank-based Anomaly Detection Method) based on the graph computing algorithm. In this method, the logs are transformed into a graph to represent the complex relationship between the log records, then we design an extended Page Rank algorithm based on the graph to get the importance score for each log. After that, we compare the scores to that of the training logs to determine whether they are abnormal or not. Finally, we compare PADM with other anomaly detection methods on the real logs, and the results show that it outperforms the currently widely used mechanisms with higher accuracy, lower time complexity and better scalability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Performance Impact of Virtualization on an HPC Cloud Performance Study of Spindle, A Web Analytics Query Engine Implemented in Spark Role of System Modeling for Audit of QoS Provisioning in Cloud Services Dependability Analysis on Open Stack IaaS Cloud: Bug Anaysis and Fault Injection Delegated Access for Hadoop Clusters in the Cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1