{"title":"激光流式细胞术和细胞分选分离的肺细胞富集群体的电镜鉴定和形态学保存:一项新技术。","authors":"D P Penney, J F Leary, R A Cooper, A Paxhia","doi":"10.3109/10520299009108066","DOIUrl":null,"url":null,"abstract":"<p><p>There is increasing need to verify the identities of cell subpopulations enriched by laser flow cytometry and fluorescence-activated cell sorting (FACS). When cell subpopulations isolated from whole organs or tissues have similar characteristics (e.g., size, granularity, staining), light, phase contrast or fluorescence microscopy may not provide sufficient resolution to identify isolated cells accurately and many flow cytometric parameters (e.g., viability, fluorescence) require the cells to be live at the point of analysis where the cell transects the laser beam. In some studies, cells identified by fluorescence microscopy as a highly enriched subpopulation were found by electron microscopy to contain significant populations of other cell types. A technique, fixation-in-flow (FIF), has been developed to increase ability to correlate morphological and laser analyses of cell subpopulations. Sheath fluid is replaced by fixative, permitting fixation to be initiated immediately after laser beam analysis of live cells. This new procedure yields improved cytoarchitectural preservation of recovered cell subpopulation(s) for evaluation by transmission or scanning electron microscopy. This report presents results from applying the methodology to identify more accurately cell subpopulations of the distal lung, specifically type II pneumocytes, Clara cells and pulmonary macrophages. A modification of this procedure was employed to isolate fibroblast subpopulations from murine lung fibroblasts grown in vitro and the procedure is being used to determine the responses of cultured fibroblasts to other permutations (e.g., X-irradiation, cytokines).</p>","PeriodicalId":21924,"journal":{"name":"Stain technology","volume":"65 4","pages":"165-77"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/10520299009108066","citationCount":"3","resultStr":"{\"title\":\"Electron microscopic identification and morphologic preservation of enriched populations of lung cells isolated by laser flow cytometry and cell sorting: a new technique.\",\"authors\":\"D P Penney, J F Leary, R A Cooper, A Paxhia\",\"doi\":\"10.3109/10520299009108066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is increasing need to verify the identities of cell subpopulations enriched by laser flow cytometry and fluorescence-activated cell sorting (FACS). When cell subpopulations isolated from whole organs or tissues have similar characteristics (e.g., size, granularity, staining), light, phase contrast or fluorescence microscopy may not provide sufficient resolution to identify isolated cells accurately and many flow cytometric parameters (e.g., viability, fluorescence) require the cells to be live at the point of analysis where the cell transects the laser beam. In some studies, cells identified by fluorescence microscopy as a highly enriched subpopulation were found by electron microscopy to contain significant populations of other cell types. A technique, fixation-in-flow (FIF), has been developed to increase ability to correlate morphological and laser analyses of cell subpopulations. Sheath fluid is replaced by fixative, permitting fixation to be initiated immediately after laser beam analysis of live cells. This new procedure yields improved cytoarchitectural preservation of recovered cell subpopulation(s) for evaluation by transmission or scanning electron microscopy. This report presents results from applying the methodology to identify more accurately cell subpopulations of the distal lung, specifically type II pneumocytes, Clara cells and pulmonary macrophages. A modification of this procedure was employed to isolate fibroblast subpopulations from murine lung fibroblasts grown in vitro and the procedure is being used to determine the responses of cultured fibroblasts to other permutations (e.g., X-irradiation, cytokines).</p>\",\"PeriodicalId\":21924,\"journal\":{\"name\":\"Stain technology\",\"volume\":\"65 4\",\"pages\":\"165-77\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/10520299009108066\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stain technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/10520299009108066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stain technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10520299009108066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electron microscopic identification and morphologic preservation of enriched populations of lung cells isolated by laser flow cytometry and cell sorting: a new technique.
There is increasing need to verify the identities of cell subpopulations enriched by laser flow cytometry and fluorescence-activated cell sorting (FACS). When cell subpopulations isolated from whole organs or tissues have similar characteristics (e.g., size, granularity, staining), light, phase contrast or fluorescence microscopy may not provide sufficient resolution to identify isolated cells accurately and many flow cytometric parameters (e.g., viability, fluorescence) require the cells to be live at the point of analysis where the cell transects the laser beam. In some studies, cells identified by fluorescence microscopy as a highly enriched subpopulation were found by electron microscopy to contain significant populations of other cell types. A technique, fixation-in-flow (FIF), has been developed to increase ability to correlate morphological and laser analyses of cell subpopulations. Sheath fluid is replaced by fixative, permitting fixation to be initiated immediately after laser beam analysis of live cells. This new procedure yields improved cytoarchitectural preservation of recovered cell subpopulation(s) for evaluation by transmission or scanning electron microscopy. This report presents results from applying the methodology to identify more accurately cell subpopulations of the distal lung, specifically type II pneumocytes, Clara cells and pulmonary macrophages. A modification of this procedure was employed to isolate fibroblast subpopulations from murine lung fibroblasts grown in vitro and the procedure is being used to determine the responses of cultured fibroblasts to other permutations (e.g., X-irradiation, cytokines).