{"title":"利用谱图理论将量子比特映射到连接受限的设备上","authors":"Joseph X. Lin, Eric R. Anschuetz, A. Harrow","doi":"10.1145/3436752","DOIUrl":null,"url":null,"abstract":"We propose an efficient heuristic for mapping the logical qubits of quantum algorithms to the physical qubits of connectivity-limited devices, adding a minimal number of connectivity-compliant SWAP gates. In particular, given a quantum circuit, we construct an undirected graph with edge weights a function of the two-qubit gates of the quantum circuit. Taking inspiration from spectral graph drawing, we use an eigenvector of the graph Laplacian to place logical qubits at coordinate locations. These placements are then mapped to physical qubits for a given connectivity. We primarily focus on one-dimensional connectivities and sketch how the general principles of our heuristic can be extended for use in more general connectivities.","PeriodicalId":365166,"journal":{"name":"ACM Transactions on Quantum Computing","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Using Spectral Graph Theory to Map Qubits onto Connectivity-limited Devices\",\"authors\":\"Joseph X. Lin, Eric R. Anschuetz, A. Harrow\",\"doi\":\"10.1145/3436752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an efficient heuristic for mapping the logical qubits of quantum algorithms to the physical qubits of connectivity-limited devices, adding a minimal number of connectivity-compliant SWAP gates. In particular, given a quantum circuit, we construct an undirected graph with edge weights a function of the two-qubit gates of the quantum circuit. Taking inspiration from spectral graph drawing, we use an eigenvector of the graph Laplacian to place logical qubits at coordinate locations. These placements are then mapped to physical qubits for a given connectivity. We primarily focus on one-dimensional connectivities and sketch how the general principles of our heuristic can be extended for use in more general connectivities.\",\"PeriodicalId\":365166,\"journal\":{\"name\":\"ACM Transactions on Quantum Computing\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Quantum Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3436752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3436752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Spectral Graph Theory to Map Qubits onto Connectivity-limited Devices
We propose an efficient heuristic for mapping the logical qubits of quantum algorithms to the physical qubits of connectivity-limited devices, adding a minimal number of connectivity-compliant SWAP gates. In particular, given a quantum circuit, we construct an undirected graph with edge weights a function of the two-qubit gates of the quantum circuit. Taking inspiration from spectral graph drawing, we use an eigenvector of the graph Laplacian to place logical qubits at coordinate locations. These placements are then mapped to physical qubits for a given connectivity. We primarily focus on one-dimensional connectivities and sketch how the general principles of our heuristic can be extended for use in more general connectivities.