移动眼动数据的语义分析

PETMEI '11 Pub Date : 2011-09-18 DOI:10.1145/2029956.2029958
J. Pelz
{"title":"移动眼动数据的语义分析","authors":"J. Pelz","doi":"10.1145/2029956.2029958","DOIUrl":null,"url":null,"abstract":"Researchers using laboratory-based eyetracking systems now have access to sophisticated data-analysis tools to reduce raw gaze data, but the huge data sets coming from wearable eyetrackers cannot be analyzed with the same tools. The lack of constraints that make mobile systems such powerful tools prevent the analysis tools designed for static or tracked observers from working with freely moving observers.\n Proposed solutions have included infrared markers hidden in the scene to provide reference points, Simultaneous Localization and Mapping (SLAM), and multi-view geometry techniques that build models from multiple views of a scene. These methods map fixations onto predefined or extracted 3D scene models, allowing traditional static-scene analysis tools to be used.\n Another approach to analysis of mobile eyetracking data is to code fixations with semantically meaningful labels rather than mapping the fixations to fixed 3D locations. This offers two important advantages over the model-based methods; semantic mapping allows coding of dynamic scenes without the need to explicitly track objects, and it provides an inherently flexible and extensible object-based coding scheme.","PeriodicalId":405392,"journal":{"name":"PETMEI '11","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Semantic analysis of mobile eyetracking data\",\"authors\":\"J. Pelz\",\"doi\":\"10.1145/2029956.2029958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers using laboratory-based eyetracking systems now have access to sophisticated data-analysis tools to reduce raw gaze data, but the huge data sets coming from wearable eyetrackers cannot be analyzed with the same tools. The lack of constraints that make mobile systems such powerful tools prevent the analysis tools designed for static or tracked observers from working with freely moving observers.\\n Proposed solutions have included infrared markers hidden in the scene to provide reference points, Simultaneous Localization and Mapping (SLAM), and multi-view geometry techniques that build models from multiple views of a scene. These methods map fixations onto predefined or extracted 3D scene models, allowing traditional static-scene analysis tools to be used.\\n Another approach to analysis of mobile eyetracking data is to code fixations with semantically meaningful labels rather than mapping the fixations to fixed 3D locations. This offers two important advantages over the model-based methods; semantic mapping allows coding of dynamic scenes without the need to explicitly track objects, and it provides an inherently flexible and extensible object-based coding scheme.\",\"PeriodicalId\":405392,\"journal\":{\"name\":\"PETMEI '11\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PETMEI '11\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2029956.2029958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PETMEI '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2029956.2029958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

使用实验室眼动追踪系统的研究人员现在可以使用复杂的数据分析工具来减少原始凝视数据,但来自可穿戴眼动追踪器的大量数据集无法用相同的工具进行分析。缺乏约束使得移动系统成为如此强大的工具,这使得为静态或跟踪观察者设计的分析工具无法与自由移动的观察者一起工作。提出的解决方案包括隐藏在场景中的红外标记以提供参考点,同时定位和映射(SLAM),以及从场景的多个视图构建模型的多视图几何技术。这些方法将固定映射到预定义或提取的3D场景模型上,从而允许使用传统的静态场景分析工具。另一种分析移动眼球追踪数据的方法是用语义上有意义的标签对注视进行编码,而不是将注视映射到固定的3D位置。与基于模型的方法相比,这提供了两个重要的优势;语义映射允许在不需要显式跟踪对象的情况下对动态场景进行编码,并且它提供了一种固有的灵活和可扩展的基于对象的编码方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semantic analysis of mobile eyetracking data
Researchers using laboratory-based eyetracking systems now have access to sophisticated data-analysis tools to reduce raw gaze data, but the huge data sets coming from wearable eyetrackers cannot be analyzed with the same tools. The lack of constraints that make mobile systems such powerful tools prevent the analysis tools designed for static or tracked observers from working with freely moving observers. Proposed solutions have included infrared markers hidden in the scene to provide reference points, Simultaneous Localization and Mapping (SLAM), and multi-view geometry techniques that build models from multiple views of a scene. These methods map fixations onto predefined or extracted 3D scene models, allowing traditional static-scene analysis tools to be used. Another approach to analysis of mobile eyetracking data is to code fixations with semantically meaningful labels rather than mapping the fixations to fixed 3D locations. This offers two important advantages over the model-based methods; semantic mapping allows coding of dynamic scenes without the need to explicitly track objects, and it provides an inherently flexible and extensible object-based coding scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Saliency-based image editing for guiding visual attention Implementing gaze control for peripheral devices Eye tracking over small and large shopping displays Speed-accuracy trade-off in dwell-based eye pointing tasks at different cognitive levels The research framework of eye-tracking based mobile device usability evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1