利用形态学信息通过使用词哈希序列标记

Zonghui Peng, Ruifang Liu, Si Li
{"title":"利用形态学信息通过使用词哈希序列标记","authors":"Zonghui Peng, Ruifang Liu, Si Li","doi":"10.1109/PIC.2017.8359510","DOIUrl":null,"url":null,"abstract":"State-of-the-art sequence labeling systems traditionally used handcrafted n-gram features and data pre-processing, but usually ignored character-level information. In this paper, we propose to apply word hashing method which can catch the morphological information of words to sequence labeling tasks. Auto-encoder is first employed to learn latent morphological representation in a pre-training stage. Our model benefits from both morphological and semantic features of words by using bidirectional LSTM structure. Experiment results show that our model achieves best result on Chunking task — 94.93% and NP-Chunking task — 95.70% on CoNLL2000 dataset and obtains competitive performance on NER task — 89.29% on CoNLL2003 dataset.","PeriodicalId":370588,"journal":{"name":"2017 International Conference on Progress in Informatics and Computing (PIC)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging morphological information via employing word hashing for sequence labeling\",\"authors\":\"Zonghui Peng, Ruifang Liu, Si Li\",\"doi\":\"10.1109/PIC.2017.8359510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-of-the-art sequence labeling systems traditionally used handcrafted n-gram features and data pre-processing, but usually ignored character-level information. In this paper, we propose to apply word hashing method which can catch the morphological information of words to sequence labeling tasks. Auto-encoder is first employed to learn latent morphological representation in a pre-training stage. Our model benefits from both morphological and semantic features of words by using bidirectional LSTM structure. Experiment results show that our model achieves best result on Chunking task — 94.93% and NP-Chunking task — 95.70% on CoNLL2000 dataset and obtains competitive performance on NER task — 89.29% on CoNLL2003 dataset.\",\"PeriodicalId\":370588,\"journal\":{\"name\":\"2017 International Conference on Progress in Informatics and Computing (PIC)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Progress in Informatics and Computing (PIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC.2017.8359510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2017.8359510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最先进的序列标记系统传统上使用手工制作的n-gram特征和数据预处理,但通常忽略字符级信息。在本文中,我们提出了一种可以捕捉词的形态信息的词哈希方法,用于序列标注任务。在预训练阶段,首先采用自编码器学习潜在形态表征。通过使用双向LSTM结构,我们的模型受益于词的形态和语义特征。实验结果表明,该模型在CoNLL2000数据集上的分块任务(94.93%)和np -分块任务(95.70%)上取得了最佳性能,在CoNLL2003数据集上的NER任务(89.29%)上取得了较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging morphological information via employing word hashing for sequence labeling
State-of-the-art sequence labeling systems traditionally used handcrafted n-gram features and data pre-processing, but usually ignored character-level information. In this paper, we propose to apply word hashing method which can catch the morphological information of words to sequence labeling tasks. Auto-encoder is first employed to learn latent morphological representation in a pre-training stage. Our model benefits from both morphological and semantic features of words by using bidirectional LSTM structure. Experiment results show that our model achieves best result on Chunking task — 94.93% and NP-Chunking task — 95.70% on CoNLL2000 dataset and obtains competitive performance on NER task — 89.29% on CoNLL2003 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation method and decision support of network education based on association rules ACER: An adaptive context-aware ensemble regression model for airfare price prediction An improved constraint model for team tactical position selection in games Trust your wallet: A new online wallet architecture for Bitcoin An approach based on decision tree for analysis of behavior with combined cycle power plant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1