基于神经网络的在线手印识别

R. Lyon, L. Yaeger
{"title":"基于神经网络的在线手印识别","authors":"R. Lyon, L. Yaeger","doi":"10.1109/MNNFS.1996.493792","DOIUrl":null,"url":null,"abstract":"The need for fast and accurate text entry on small handheld computers has led to a resurgence of interest in on-line word recognition using artificial neural networks. Classical methods have been combined and improved to produce robust recognition of hand-printed English text. The central concept of a neural net as a character classifier provides a good base for a recognition system; long-standing issues relative to training generalization, segmentation, probabilistic formalisms, etc., need to resolved, however, to get adequate performance. A number of innovations in how to use a neural net as a classifier in a word recognizer are presented: negative training, stroke warping, balancing, normalized output error, error emphasis, multiple representations, quantized weights, and integrated word segmentation all contribute to efficient and robust performance.","PeriodicalId":151891,"journal":{"name":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","volume":"36 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"On-line hand-printing recognition with neural networks\",\"authors\":\"R. Lyon, L. Yaeger\",\"doi\":\"10.1109/MNNFS.1996.493792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need for fast and accurate text entry on small handheld computers has led to a resurgence of interest in on-line word recognition using artificial neural networks. Classical methods have been combined and improved to produce robust recognition of hand-printed English text. The central concept of a neural net as a character classifier provides a good base for a recognition system; long-standing issues relative to training generalization, segmentation, probabilistic formalisms, etc., need to resolved, however, to get adequate performance. A number of innovations in how to use a neural net as a classifier in a word recognizer are presented: negative training, stroke warping, balancing, normalized output error, error emphasis, multiple representations, quantized weights, and integrated word segmentation all contribute to efficient and robust performance.\",\"PeriodicalId\":151891,\"journal\":{\"name\":\"Proceedings of Fifth International Conference on Microelectronics for Neural Networks\",\"volume\":\"36 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Fifth International Conference on Microelectronics for Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MNNFS.1996.493792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MNNFS.1996.493792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

由于需要在小型手持计算机上快速准确地输入文本,人们对使用人工神经网络进行在线单词识别的兴趣重新燃起。本文结合并改进了经典方法,实现了对手印英语文本的鲁棒识别。神经网络作为字符分类器的核心概念为识别系统提供了良好的基础;然而,需要解决与训练泛化、分割、概率形式化等相关的长期问题,以获得足够的性能。在如何使用神经网络作为分类器的词识别器中提出了许多创新:负训练,笔画扭曲,平衡,归一化输出误差,错误强调,多重表示,量化权重和集成分词都有助于高效和鲁棒的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On-line hand-printing recognition with neural networks
The need for fast and accurate text entry on small handheld computers has led to a resurgence of interest in on-line word recognition using artificial neural networks. Classical methods have been combined and improved to produce robust recognition of hand-printed English text. The central concept of a neural net as a character classifier provides a good base for a recognition system; long-standing issues relative to training generalization, segmentation, probabilistic formalisms, etc., need to resolved, however, to get adequate performance. A number of innovations in how to use a neural net as a classifier in a word recognizer are presented: negative training, stroke warping, balancing, normalized output error, error emphasis, multiple representations, quantized weights, and integrated word segmentation all contribute to efficient and robust performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retinomorphic vision systems Low power, low voltage conductance-mode CMOS analog neuron A digital neural network LSI using sparse memory access architecture Adaptive two-dimensional neuron grids A correlation-based network for hardware implementations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1