对抗鲁棒ddos攻击分类研究

Michael Guarino, Pablo Rivas, C. DeCusatis
{"title":"对抗鲁棒ddos攻击分类研究","authors":"Michael Guarino, Pablo Rivas, C. DeCusatis","doi":"10.1109/UEMCON51285.2020.9298167","DOIUrl":null,"url":null,"abstract":"On the frontier of cybersecurity are a class of emergent security threats that learn to find vulnerabilities in machine learning systems. A supervised machine learning classifier learns a mapping from x to y where x is the input features and y is a vector of associated labels. Neural Networks are state of the art performers on most vision, audio, and natural language processing tasks. Neural Networks have been shown to be vulnerable to adversarial perturbations of the input, which cause them to misclassify with high confidence. Adversarial perturbations are small but targeted modifications to the input often undetectable by the human eye. Adversarial perturbations pose risk to applications that rely on machine learning models. Neural Networks have been shown to be able to classify distributed denial of service (DDoS) attacks by learning a dataset of attack characteristics visualized using three-axis hive plots. In this work we present a novel application of a classifier trained to classify DDoS attacks that is robust to some of the most common, known, classes of gradient-based and gradient-free adversarial attacks.","PeriodicalId":433609,"journal":{"name":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Towards Adversarially Robust DDoS-Attack Classification\",\"authors\":\"Michael Guarino, Pablo Rivas, C. DeCusatis\",\"doi\":\"10.1109/UEMCON51285.2020.9298167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the frontier of cybersecurity are a class of emergent security threats that learn to find vulnerabilities in machine learning systems. A supervised machine learning classifier learns a mapping from x to y where x is the input features and y is a vector of associated labels. Neural Networks are state of the art performers on most vision, audio, and natural language processing tasks. Neural Networks have been shown to be vulnerable to adversarial perturbations of the input, which cause them to misclassify with high confidence. Adversarial perturbations are small but targeted modifications to the input often undetectable by the human eye. Adversarial perturbations pose risk to applications that rely on machine learning models. Neural Networks have been shown to be able to classify distributed denial of service (DDoS) attacks by learning a dataset of attack characteristics visualized using three-axis hive plots. In this work we present a novel application of a classifier trained to classify DDoS attacks that is robust to some of the most common, known, classes of gradient-based and gradient-free adversarial attacks.\",\"PeriodicalId\":433609,\"journal\":{\"name\":\"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON51285.2020.9298167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON51285.2020.9298167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在网络安全的前沿是一类紧急安全威胁,它们学会在机器学习系统中发现漏洞。监督式机器学习分类器学习从x到y的映射,其中x是输入特征,y是相关标签的向量。神经网络是大多数视觉、音频和自然语言处理任务中最先进的表演者。神经网络已被证明容易受到输入的对抗性扰动的影响,这导致它们在高置信度下进行错误分类。对抗性扰动是对输入的微小但有针对性的修改,通常人眼无法检测到。对抗性扰动对依赖机器学习模型的应用程序构成风险。神经网络已经被证明能够通过学习使用三轴蜂巢图可视化的攻击特征数据集来对分布式拒绝服务(DDoS)攻击进行分类。在这项工作中,我们提出了一种新的分类器应用,该分类器经过训练,可以对一些最常见的、已知的基于梯度和无梯度的对抗性攻击进行稳健分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Adversarially Robust DDoS-Attack Classification
On the frontier of cybersecurity are a class of emergent security threats that learn to find vulnerabilities in machine learning systems. A supervised machine learning classifier learns a mapping from x to y where x is the input features and y is a vector of associated labels. Neural Networks are state of the art performers on most vision, audio, and natural language processing tasks. Neural Networks have been shown to be vulnerable to adversarial perturbations of the input, which cause them to misclassify with high confidence. Adversarial perturbations are small but targeted modifications to the input often undetectable by the human eye. Adversarial perturbations pose risk to applications that rely on machine learning models. Neural Networks have been shown to be able to classify distributed denial of service (DDoS) attacks by learning a dataset of attack characteristics visualized using three-axis hive plots. In this work we present a novel application of a classifier trained to classify DDoS attacks that is robust to some of the most common, known, classes of gradient-based and gradient-free adversarial attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Agile Edge Classification of Ocean Sounds EMG-based Hand Gesture Recognition by Deep Time-frequency Learning for Assisted Living & Rehabilitation A High Security Signature Algorithm Based on Kerberos for REST-style Cloud Storage Service A Comparison of Blockchain-Based Wireless Sensor Network Protocols Computer Vision based License Plate Detection for Automated Vehicle Parking Management System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1