优化和拓扑安全简化的建筑足迹

J. Haunert, A. Wolff
{"title":"优化和拓扑安全简化的建筑足迹","authors":"J. Haunert, A. Wolff","doi":"10.1145/1869790.1869819","DOIUrl":null,"url":null,"abstract":"We present an optimization approach to simplify sets of building footprints represented as polygons. We simplify each polygonal ring by selecting a subsequence of its original edges; the vertices of the simplified ring are defined by intersections of consecutive (and possibly extended) edges in the selected sequence. Our aim is to minimize the number of all output edges subject to a user-defined error tolerance. Since we earlier showed that the problem is NP-hard when requiring non-intersecting simple polygons as output, we cannot hope for an efficient, exact algorithm. Therefore, we present an efficient algorithm for a relaxed problem and an integer program (IP) that allows us to solve the original problem with existing software. Our IP is large, since it has O(m6) constraints, where m is the number of input edges. In order to keep the running time small, we first consider a subset of only O(m) constraints. The choice of the constraints ensures some basic properties of the solution. Constraints that were neglected are added during optimization whenever they become violated by a new solution encountered. Using this approach we simplified a set of 144 buildings with a total of 2056 edges in 4.1 seconds on a standard desktop PC; the simplified building set contained 762 edges. During optimization, the number of constraints increased by a mere 13%. We also show how to apply cartographic quality measures in our method and discuss their effects on examples.","PeriodicalId":359068,"journal":{"name":"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Optimal and topologically safe simplification of building footprints\",\"authors\":\"J. Haunert, A. Wolff\",\"doi\":\"10.1145/1869790.1869819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an optimization approach to simplify sets of building footprints represented as polygons. We simplify each polygonal ring by selecting a subsequence of its original edges; the vertices of the simplified ring are defined by intersections of consecutive (and possibly extended) edges in the selected sequence. Our aim is to minimize the number of all output edges subject to a user-defined error tolerance. Since we earlier showed that the problem is NP-hard when requiring non-intersecting simple polygons as output, we cannot hope for an efficient, exact algorithm. Therefore, we present an efficient algorithm for a relaxed problem and an integer program (IP) that allows us to solve the original problem with existing software. Our IP is large, since it has O(m6) constraints, where m is the number of input edges. In order to keep the running time small, we first consider a subset of only O(m) constraints. The choice of the constraints ensures some basic properties of the solution. Constraints that were neglected are added during optimization whenever they become violated by a new solution encountered. Using this approach we simplified a set of 144 buildings with a total of 2056 edges in 4.1 seconds on a standard desktop PC; the simplified building set contained 762 edges. During optimization, the number of constraints increased by a mere 13%. We also show how to apply cartographic quality measures in our method and discuss their effects on examples.\",\"PeriodicalId\":359068,\"journal\":{\"name\":\"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1869790.1869819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1869790.1869819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

我们提出了一种优化方法来简化以多边形表示的建筑足迹集。我们通过选择其原始边的子序列来简化每个多边形环;简化环的顶点由选定序列中连续(可能扩展)边的交点定义。我们的目标是最小化所有受用户定义误差容限的输出边的数量。由于我们之前表明,当需要不相交的简单多边形作为输出时,这个问题是np困难的,我们不能指望得到一个有效的、精确的算法。因此,我们提出了一个有效的松弛问题算法和一个整数程序(IP),使我们能够用现有的软件来解决原始问题。我们的IP很大,因为它有O(m6)个约束,其中m是输入边的数量。为了保持较小的运行时间,我们首先考虑一个只有O(m)个约束的子集。约束条件的选择保证了解的一些基本性质。在优化过程中,只要遇到新的解决方案违反了被忽略的约束,就会添加这些约束。使用这种方法,我们在4.1秒内在标准台式电脑上简化了144座建筑的2056条边;简化的建筑集包含762条边。在优化过程中,约束的数量仅增加了13%。我们还展示了如何在我们的方法中应用制图质量度量,并讨论了它们对实例的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal and topologically safe simplification of building footprints
We present an optimization approach to simplify sets of building footprints represented as polygons. We simplify each polygonal ring by selecting a subsequence of its original edges; the vertices of the simplified ring are defined by intersections of consecutive (and possibly extended) edges in the selected sequence. Our aim is to minimize the number of all output edges subject to a user-defined error tolerance. Since we earlier showed that the problem is NP-hard when requiring non-intersecting simple polygons as output, we cannot hope for an efficient, exact algorithm. Therefore, we present an efficient algorithm for a relaxed problem and an integer program (IP) that allows us to solve the original problem with existing software. Our IP is large, since it has O(m6) constraints, where m is the number of input edges. In order to keep the running time small, we first consider a subset of only O(m) constraints. The choice of the constraints ensures some basic properties of the solution. Constraints that were neglected are added during optimization whenever they become violated by a new solution encountered. Using this approach we simplified a set of 144 buildings with a total of 2056 edges in 4.1 seconds on a standard desktop PC; the simplified building set contained 762 edges. During optimization, the number of constraints increased by a mere 13%. We also show how to apply cartographic quality measures in our method and discuss their effects on examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pai Geolocation Time Geography Stationarity Cognitive Mapping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1