第一代和第二代Kinect多媒体应用性能评估

Simone Zennaro, Matteo Munaro, S. Milani, P. Zanuttigh, A. Bernardi, S. Ghidoni, E. Menegatti
{"title":"第一代和第二代Kinect多媒体应用性能评估","authors":"Simone Zennaro, Matteo Munaro, S. Milani, P. Zanuttigh, A. Bernardi, S. Ghidoni, E. Menegatti","doi":"10.1109/ICME.2015.7177380","DOIUrl":null,"url":null,"abstract":"Microsoft Kinect had a key role in the development of consumer depth sensors being the device that brought depth acquisition to the mass market. Despite the success of this sensor, with the introduction of the second generation, Microsoft has completely changed the technology behind the sensor from structured light to Time-Of-Flight. This paper presents a comparison of the data provided by the first and second generation Kinect in order to explain the achievements that have been obtained with the switch of technology. After an accurate analysis of the accuracy of the two sensors under different conditions, two sample applications, i.e., 3D reconstruction and people tracking, are presented and used to compare the performance of the two sensors.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"125","resultStr":"{\"title\":\"Performance evaluation of the 1st and 2nd generation Kinect for multimedia applications\",\"authors\":\"Simone Zennaro, Matteo Munaro, S. Milani, P. Zanuttigh, A. Bernardi, S. Ghidoni, E. Menegatti\",\"doi\":\"10.1109/ICME.2015.7177380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microsoft Kinect had a key role in the development of consumer depth sensors being the device that brought depth acquisition to the mass market. Despite the success of this sensor, with the introduction of the second generation, Microsoft has completely changed the technology behind the sensor from structured light to Time-Of-Flight. This paper presents a comparison of the data provided by the first and second generation Kinect in order to explain the achievements that have been obtained with the switch of technology. After an accurate analysis of the accuracy of the two sensors under different conditions, two sample applications, i.e., 3D reconstruction and people tracking, are presented and used to compare the performance of the two sensors.\",\"PeriodicalId\":146271,\"journal\":{\"name\":\"2015 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"125\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2015.7177380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 125

摘要

微软Kinect在消费者深度传感器的发展中发挥了关键作用,它将深度采集技术带入了大众市场。尽管这款传感器取得了成功,但随着第二代传感器的推出,微软已经完全改变了传感器背后的技术,从结构光到飞行时间。本文将第一代和第二代Kinect所提供的数据进行比较,以说明随着技术的切换所取得的成就。在准确分析了两种传感器在不同条件下的精度后,提出了两种应用示例,即三维重建和人员跟踪,并使用它们来比较两种传感器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance evaluation of the 1st and 2nd generation Kinect for multimedia applications
Microsoft Kinect had a key role in the development of consumer depth sensors being the device that brought depth acquisition to the mass market. Despite the success of this sensor, with the introduction of the second generation, Microsoft has completely changed the technology behind the sensor from structured light to Time-Of-Flight. This paper presents a comparison of the data provided by the first and second generation Kinect in order to explain the achievements that have been obtained with the switch of technology. After an accurate analysis of the accuracy of the two sensors under different conditions, two sample applications, i.e., 3D reconstruction and people tracking, are presented and used to compare the performance of the two sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Affect-expressive hand gestures synthesis and animation VTouch: Vision-enhanced interaction for large touch displays Egocentric hand pose estimation and distance recovery in a single RGB image A hybrid approach for retrieving diverse social images of landmarks Spatial perception reproduction of sound events based on sound property coincidences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1