学习基于序列的多核视频概念检测

W. Bailer
{"title":"学习基于序列的多核视频概念检测","authors":"W. Bailer","doi":"10.1109/ISM.2012.22","DOIUrl":null,"url":null,"abstract":"Kernel based methods are widely applied to concept and event detection in video. Recently, kernels working on sequences of feature vectors of a video segment have been proposed for this problem, rather than treating feature vectors of individual frames independently. It has been shown that these sequence-based kernels (based e.g., on the dynamic time warping or edit distance paradigms) outperform methods working on single frames for concepts with inherently dynamic features. Existing work on sequence-based kernels either uses a single type of feature or a fixed combination of the feature vectors of each frame. However, different features (e.g., visual and audio features) may be sampled at different (possibly even irregular) rates, and the optimal alignment between the sequences of features may be different. Multiple kernel learning (MKL) has been applied to similarly structured problems, and we propose MKL for combining different sequence-based kernels on different features for video concept detection. We demonstrate the advantage of the proposed method with experiments on the TRECVID 2011 Semantic Indexing data set.","PeriodicalId":282528,"journal":{"name":"2012 IEEE International Symposium on Multimedia","volume":"Suppl 33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning Multiple Sequence-Based Kernels for Video Concept Detection\",\"authors\":\"W. Bailer\",\"doi\":\"10.1109/ISM.2012.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kernel based methods are widely applied to concept and event detection in video. Recently, kernels working on sequences of feature vectors of a video segment have been proposed for this problem, rather than treating feature vectors of individual frames independently. It has been shown that these sequence-based kernels (based e.g., on the dynamic time warping or edit distance paradigms) outperform methods working on single frames for concepts with inherently dynamic features. Existing work on sequence-based kernels either uses a single type of feature or a fixed combination of the feature vectors of each frame. However, different features (e.g., visual and audio features) may be sampled at different (possibly even irregular) rates, and the optimal alignment between the sequences of features may be different. Multiple kernel learning (MKL) has been applied to similarly structured problems, and we propose MKL for combining different sequence-based kernels on different features for video concept detection. We demonstrate the advantage of the proposed method with experiments on the TRECVID 2011 Semantic Indexing data set.\",\"PeriodicalId\":282528,\"journal\":{\"name\":\"2012 IEEE International Symposium on Multimedia\",\"volume\":\"Suppl 33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Symposium on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2012.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2012.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于核的方法广泛应用于视频中的概念和事件检测。最近,针对这一问题提出了处理视频片段的特征向量序列的核函数,而不是单独处理单个帧的特征向量。已经证明,这些基于序列的核(例如,基于动态时间翘曲或编辑距离范例)优于对具有固有动态特征的概念在单帧上工作的方法。现有的基于序列的核要么使用单一类型的特征,要么使用每帧特征向量的固定组合。然而,不同的特征(例如,视觉和音频特征)可能以不同的(甚至可能是不规则的)速率采样,并且特征序列之间的最佳对齐可能是不同的。多核学习(Multiple kernel learning, MKL)已经被应用于类似结构的问题中,我们提出将基于序列的不同特征的核结合起来进行视频概念检测。在TRECVID 2011语义索引数据集上进行了实验,验证了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Multiple Sequence-Based Kernels for Video Concept Detection
Kernel based methods are widely applied to concept and event detection in video. Recently, kernels working on sequences of feature vectors of a video segment have been proposed for this problem, rather than treating feature vectors of individual frames independently. It has been shown that these sequence-based kernels (based e.g., on the dynamic time warping or edit distance paradigms) outperform methods working on single frames for concepts with inherently dynamic features. Existing work on sequence-based kernels either uses a single type of feature or a fixed combination of the feature vectors of each frame. However, different features (e.g., visual and audio features) may be sampled at different (possibly even irregular) rates, and the optimal alignment between the sequences of features may be different. Multiple kernel learning (MKL) has been applied to similarly structured problems, and we propose MKL for combining different sequence-based kernels on different features for video concept detection. We demonstrate the advantage of the proposed method with experiments on the TRECVID 2011 Semantic Indexing data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detailed Comparative Analysis of VP8 and H.264 Enhancing the MST-CSS Representation Using Robust Geometric Features, for Efficient Content Based Video Retrieval (CBVR) A Standardized Metadata Set for Annotation of Virtual and Remote Laboratories Using Wavelets and Gaussian Mixture Models for Audio Classification A Data Aware Admission Control Technique for Social Live Streams (SOLISs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1