用于标记聚类的Web 2.0社交书签选择

S. S. Kumar, H. Inbarani
{"title":"用于标记聚类的Web 2.0社交书签选择","authors":"S. S. Kumar, H. Inbarani","doi":"10.1109/ICPRIME.2013.6496724","DOIUrl":null,"url":null,"abstract":"Tagging is a popular way to annotate web 2.0 web sites. A tag is any user-generated word or phrase that helps to organize web 2.0 content. The current hype around web 2.0 applications, poses several important challenges for future data and web mining methods. An important challenge of Web 2.0 is the fact that a large amount of data has been generated over a short period. Clustering the tag data is very tedious since the tag space is very large in several social book marking web sites. So, instead of clustering the whole tag space of Web 2.0 data, some tags frequent enough in the tag space can be selected for clustering by applying feature selection techniques. The goal of feature selection is to determine a marginal bookmarked URL subset from a Web 2.0 data while retaining a suitably high accuracy in representing the original bookmarks. Tag clustering is the process of grouping similar tags into the same cluster and is important for the success of collaborative tagging services. In this paper, Unsupervised Quick Reduct feature selection algorithm is applied to find a set of most commonly tagged bookmarks and then clustering techniques such as Soft rough fuzzy clustering and Rough K-Means algorithms are applied for clustering of user generated tags and the performance of these clustering approaches are illustrated in this paper.","PeriodicalId":123210,"journal":{"name":"2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Web 2.0 social bookmark selection for tag clustering\",\"authors\":\"S. S. Kumar, H. Inbarani\",\"doi\":\"10.1109/ICPRIME.2013.6496724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tagging is a popular way to annotate web 2.0 web sites. A tag is any user-generated word or phrase that helps to organize web 2.0 content. The current hype around web 2.0 applications, poses several important challenges for future data and web mining methods. An important challenge of Web 2.0 is the fact that a large amount of data has been generated over a short period. Clustering the tag data is very tedious since the tag space is very large in several social book marking web sites. So, instead of clustering the whole tag space of Web 2.0 data, some tags frequent enough in the tag space can be selected for clustering by applying feature selection techniques. The goal of feature selection is to determine a marginal bookmarked URL subset from a Web 2.0 data while retaining a suitably high accuracy in representing the original bookmarks. Tag clustering is the process of grouping similar tags into the same cluster and is important for the success of collaborative tagging services. In this paper, Unsupervised Quick Reduct feature selection algorithm is applied to find a set of most commonly tagged bookmarks and then clustering techniques such as Soft rough fuzzy clustering and Rough K-Means algorithms are applied for clustering of user generated tags and the performance of these clustering approaches are illustrated in this paper.\",\"PeriodicalId\":123210,\"journal\":{\"name\":\"2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPRIME.2013.6496724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPRIME.2013.6496724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

标记是注释web 2.0网站的一种流行方法。标签是任何用户生成的有助于组织web 2.0内容的单词或短语。当前围绕web 2.0应用程序的炒作,对未来的数据和web挖掘方法提出了几个重要的挑战。Web 2.0的一个重要挑战是在短时间内生成了大量数据。在一些社会化书签网站中,由于标签空间非常大,因此标签数据聚类是非常繁琐的。因此,不必对Web 2.0数据的整个标记空间进行聚类,而是可以通过应用特征选择技术选择标记空间中足够频繁的一些标记进行聚类。特性选择的目标是从Web 2.0数据中确定边缘书签URL子集,同时在表示原始书签方面保持适当的高精度。标签聚类是将相似的标签分组到同一集群中的过程,对于协作标记服务的成功至关重要。本文采用无监督快速约简特征选择算法寻找一组最常标记的书签,然后采用软粗糙模糊聚类和粗糙K-Means算法等聚类技术对用户生成的标签进行聚类,并对这些聚类方法的性能进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Web 2.0 social bookmark selection for tag clustering
Tagging is a popular way to annotate web 2.0 web sites. A tag is any user-generated word or phrase that helps to organize web 2.0 content. The current hype around web 2.0 applications, poses several important challenges for future data and web mining methods. An important challenge of Web 2.0 is the fact that a large amount of data has been generated over a short period. Clustering the tag data is very tedious since the tag space is very large in several social book marking web sites. So, instead of clustering the whole tag space of Web 2.0 data, some tags frequent enough in the tag space can be selected for clustering by applying feature selection techniques. The goal of feature selection is to determine a marginal bookmarked URL subset from a Web 2.0 data while retaining a suitably high accuracy in representing the original bookmarks. Tag clustering is the process of grouping similar tags into the same cluster and is important for the success of collaborative tagging services. In this paper, Unsupervised Quick Reduct feature selection algorithm is applied to find a set of most commonly tagged bookmarks and then clustering techniques such as Soft rough fuzzy clustering and Rough K-Means algorithms are applied for clustering of user generated tags and the performance of these clustering approaches are illustrated in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Separable reversible data hiding using Rc4 algorithm Personal approach for mobile search: A review Bijective soft set based classification of medical data Deployment and power assignment problem in Wireless Sensor Networks for intruder detection application using MEA Protein sequence motif patterns using adaptive Fuzzy C-Means granular computing model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1