利用MLP神经网络检测巴西番茄晚疫病

S. M. Cruz, G. K. Vianna
{"title":"利用MLP神经网络检测巴西番茄晚疫病","authors":"S. M. Cruz, G. K. Vianna","doi":"10.4018/IJNCR.2015100102","DOIUrl":null,"url":null,"abstract":"The food quality is a major issue in agriculture, economics, and public health. The tomato is one the most consumed vegetables in the world, having a significant production chain in Brazil. Its culture permeates many economic and social sectors. This paper presents a technological approach focused on enhancing the quality of tomatoes crops. The authors developed intelligent computational strategies to support early detection of diseases in Brazilian tomato crops. Their approach consorts real field experiments with inexpensive computer-aided experiments based on pattern recognition using neural networks techniques. The recognition tasks aimed at the identification foliage diseases named late blight, which is characterized by the incidence of brown spots on tomato leaves. The identification method achieved a hit rate of 94.12%, by using digital images in the visible spectrum of the leaves.","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using MLP Neural Networks to Detect Late Blight in Brazilian Tomato Crops\",\"authors\":\"S. M. Cruz, G. K. Vianna\",\"doi\":\"10.4018/IJNCR.2015100102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The food quality is a major issue in agriculture, economics, and public health. The tomato is one the most consumed vegetables in the world, having a significant production chain in Brazil. Its culture permeates many economic and social sectors. This paper presents a technological approach focused on enhancing the quality of tomatoes crops. The authors developed intelligent computational strategies to support early detection of diseases in Brazilian tomato crops. Their approach consorts real field experiments with inexpensive computer-aided experiments based on pattern recognition using neural networks techniques. The recognition tasks aimed at the identification foliage diseases named late blight, which is characterized by the incidence of brown spots on tomato leaves. The identification method achieved a hit rate of 94.12%, by using digital images in the visible spectrum of the leaves.\",\"PeriodicalId\":369881,\"journal\":{\"name\":\"Int. J. Nat. Comput. Res.\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Nat. Comput. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJNCR.2015100102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJNCR.2015100102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

食品质量是农业、经济和公共卫生领域的一个重大问题。西红柿是世界上消费最多的蔬菜之一,在巴西有一个重要的生产链。它的文化渗透到许多经济和社会部门。本文介绍了一种提高番茄品质的技术途径。作者开发了智能计算策略来支持巴西番茄作物疾病的早期检测。他们的方法结合了真实的现场实验和基于使用神经网络技术的模式识别的廉价计算机辅助实验。该识别任务旨在识别以番茄叶片褐斑病为特征的晚疫病。该方法利用叶片可见光谱中的数字图像进行识别,准确率为94.12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using MLP Neural Networks to Detect Late Blight in Brazilian Tomato Crops
The food quality is a major issue in agriculture, economics, and public health. The tomato is one the most consumed vegetables in the world, having a significant production chain in Brazil. Its culture permeates many economic and social sectors. This paper presents a technological approach focused on enhancing the quality of tomatoes crops. The authors developed intelligent computational strategies to support early detection of diseases in Brazilian tomato crops. Their approach consorts real field experiments with inexpensive computer-aided experiments based on pattern recognition using neural networks techniques. The recognition tasks aimed at the identification foliage diseases named late blight, which is characterized by the incidence of brown spots on tomato leaves. The identification method achieved a hit rate of 94.12%, by using digital images in the visible spectrum of the leaves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insights Into Incorporating Trustworthiness and Ethics in AI Systems With Explainable AI Concept Drift Adaptation in Intrusion Detection Systems Using Ensemble Learning Natural Computing of Human Facial Emotion Using Multi-Learning Fuzzy Approach Detection of Small Oranges Using YOLO v3 Feature Pyramid Mechanism Performance Parameter Evaluation of 7nm FinFET by Tuning Metal Work Function and High K Dielectrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1