基于GIS和遥感的尼日尔三角洲奥拉西河下游地貌参数与地形变化

D. Eteh, E. Akpofure, S. Otobo
{"title":"基于GIS和遥感的尼日尔三角洲奥拉西河下游地貌参数与地形变化","authors":"D. Eteh, E. Akpofure, S. Otobo","doi":"10.30564/jasr.v5i1.3873","DOIUrl":null,"url":null,"abstract":"In watershed hydrology, the morphometric features of a river basin are vital to examine the lower Orashi River basin morphological and hydrological aspects, as well as its flood potential, based on their morphometric characteristics using remotely sensed SRTM data that was analyzed with ArcGIS software. The areal, linear, and relief aspects of the Orashi River basin were examined as morphometric parameters. The lower Orashi river basin, according to the findings, has a total size of 625.61 km2 and a perimeter of 307.98 km, with a 5th order river network based on Strahler categorization and a dendritic drainage pattern. Because of low drainage density, the drainage texture is very fine, the relief is low, and the slope is very low. Bifurcation ratio, circularity ratio, drainage density aspect ratio, form factor, and stream frequency values indicate that the basin is less elongated and would produce surface runoff for a longer period, while topographic changes show that the river is decreasing with depth in the land area at about the same elevation as a result of sand deposited due to lack of maintenance by dredging, which implies that the basin is morphometrically elevated and sensitive to erosion and flooding. To understand geohydrological features and to plan and manage watersheds, morphometric analysis based on geographic information systems and remote sensing techniques is beneficial.","PeriodicalId":193824,"journal":{"name":"Journal of Atmospheric Science Research","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"GIS & Remote Sensing Based Morphometric Parameters and Topographic Changes of the Lower Orashi River in Niger Delta\",\"authors\":\"D. Eteh, E. Akpofure, S. Otobo\",\"doi\":\"10.30564/jasr.v5i1.3873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In watershed hydrology, the morphometric features of a river basin are vital to examine the lower Orashi River basin morphological and hydrological aspects, as well as its flood potential, based on their morphometric characteristics using remotely sensed SRTM data that was analyzed with ArcGIS software. The areal, linear, and relief aspects of the Orashi River basin were examined as morphometric parameters. The lower Orashi river basin, according to the findings, has a total size of 625.61 km2 and a perimeter of 307.98 km, with a 5th order river network based on Strahler categorization and a dendritic drainage pattern. Because of low drainage density, the drainage texture is very fine, the relief is low, and the slope is very low. Bifurcation ratio, circularity ratio, drainage density aspect ratio, form factor, and stream frequency values indicate that the basin is less elongated and would produce surface runoff for a longer period, while topographic changes show that the river is decreasing with depth in the land area at about the same elevation as a result of sand deposited due to lack of maintenance by dredging, which implies that the basin is morphometrically elevated and sensitive to erosion and flooding. To understand geohydrological features and to plan and manage watersheds, morphometric analysis based on geographic information systems and remote sensing techniques is beneficial.\",\"PeriodicalId\":193824,\"journal\":{\"name\":\"Journal of Atmospheric Science Research\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric Science Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30564/jasr.v5i1.3873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30564/jasr.v5i1.3873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在流域水文学中,基于遥感SRTM数据的形态特征,利用ArcGIS软件分析河流流域的形态特征,流域的形态特征对于研究Orashi河下游流域的形态和水文方面及其洪水潜力至关重要。Orashi河流域的面积、线性和地形方面作为形态计量参数进行了研究。结果表明,下Orashi河流域总面积为625.61 km2,周长为307.98 km,具有基于Strahler分类的5级河网和树突状水系。由于排水密度低,排水纹理很细,起伏度低,坡度很低。分岔比、圆度比、排水密度宽高比、形状因子和水流频率值表明,流域长度较短,地表径流产生时间较长,而地形变化表明,在相同高程的陆地区域,由于疏浚缺乏维护导致泥沙淤积,河流随深度减少,这表明该流域在形态上升高,对侵蚀和洪水敏感。为了了解地理水文特征,规划和管理流域,基于地理信息系统和遥感技术的形态计量学分析是有益的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GIS & Remote Sensing Based Morphometric Parameters and Topographic Changes of the Lower Orashi River in Niger Delta
In watershed hydrology, the morphometric features of a river basin are vital to examine the lower Orashi River basin morphological and hydrological aspects, as well as its flood potential, based on their morphometric characteristics using remotely sensed SRTM data that was analyzed with ArcGIS software. The areal, linear, and relief aspects of the Orashi River basin were examined as morphometric parameters. The lower Orashi river basin, according to the findings, has a total size of 625.61 km2 and a perimeter of 307.98 km, with a 5th order river network based on Strahler categorization and a dendritic drainage pattern. Because of low drainage density, the drainage texture is very fine, the relief is low, and the slope is very low. Bifurcation ratio, circularity ratio, drainage density aspect ratio, form factor, and stream frequency values indicate that the basin is less elongated and would produce surface runoff for a longer period, while topographic changes show that the river is decreasing with depth in the land area at about the same elevation as a result of sand deposited due to lack of maintenance by dredging, which implies that the basin is morphometrically elevated and sensitive to erosion and flooding. To understand geohydrological features and to plan and manage watersheds, morphometric analysis based on geographic information systems and remote sensing techniques is beneficial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dense Fog in the Netherlands: Composition of the Nuclei that Contribute Most to the Droplet Number Concentration Assessment of the Intertropical Convergence Zone over the Atlantic Ocean through an Algorithm Based on Precipitation Air Pollution Risk Assessment Using GIS and Remotely Sensed Data in Kirkuk City, Iraq Relationship and Variability of Atmospheric Precipitation Characteristics in the North-West of Ukraine Variation of Dynamical Parameters with Upper Tropospheric Potential Vorticity in Tropical Cyclone over the North Indian Ocean Using WRF Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1