{"title":"在多维空间中挖掘不断发展的客户-产品关系","authors":"Xiaolei Li, Jiawei Han, Xiaoxin Yin, Dong Xin","doi":"10.1109/ICDE.2005.88","DOIUrl":null,"url":null,"abstract":"Previous work on mining transactional database has focused primarily on mining frequent Itemsets, association rules, and sequential patterns. However, interesting relationships between customers and items, especially their evolution with time, have not been studied thoroughly. In this paper, we propose a Gaussian transformation-based regression model that captures time-variant relationships between customers and products. Moreover, since it is interesting to discover such relationships in a multi-dimensional space, an efficient method has been developed to compute multi-dimensional aggregates of such curves in a data cube environment. Our experimental results have demonstrated the promise of the approach.","PeriodicalId":297231,"journal":{"name":"21st International Conference on Data Engineering (ICDE'05)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mining evolving customer-product relationships in multi-dimensional space\",\"authors\":\"Xiaolei Li, Jiawei Han, Xiaoxin Yin, Dong Xin\",\"doi\":\"10.1109/ICDE.2005.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous work on mining transactional database has focused primarily on mining frequent Itemsets, association rules, and sequential patterns. However, interesting relationships between customers and items, especially their evolution with time, have not been studied thoroughly. In this paper, we propose a Gaussian transformation-based regression model that captures time-variant relationships between customers and products. Moreover, since it is interesting to discover such relationships in a multi-dimensional space, an efficient method has been developed to compute multi-dimensional aggregates of such curves in a data cube environment. Our experimental results have demonstrated the promise of the approach.\",\"PeriodicalId\":297231,\"journal\":{\"name\":\"21st International Conference on Data Engineering (ICDE'05)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on Data Engineering (ICDE'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2005.88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on Data Engineering (ICDE'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2005.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mining evolving customer-product relationships in multi-dimensional space
Previous work on mining transactional database has focused primarily on mining frequent Itemsets, association rules, and sequential patterns. However, interesting relationships between customers and items, especially their evolution with time, have not been studied thoroughly. In this paper, we propose a Gaussian transformation-based regression model that captures time-variant relationships between customers and products. Moreover, since it is interesting to discover such relationships in a multi-dimensional space, an efficient method has been developed to compute multi-dimensional aggregates of such curves in a data cube environment. Our experimental results have demonstrated the promise of the approach.