从运动轨迹中有效地获取人类存在先验

H. Habe, Hidehito Nakagawa, M. Kidode
{"title":"从运动轨迹中有效地获取人类存在先验","authors":"H. Habe, Hidehito Nakagawa, M. Kidode","doi":"10.2197/ipsjtcva.2.145","DOIUrl":null,"url":null,"abstract":"This paper reports a method for acquiring the prior probability of human existence by using past human trajectories and the color of an image. The priors play important roles in human detection as well as in scene understanding. The proposed method is based on the assumption that a person can exist again in an area where he/she existed in the past. In order to acquire the priors efficiently, a high prior probability is assigned to an area having the same color as past human trajectories. We use a particle filter for representing the prior probability. Therefore, we can represent a complex prior probability using only a few parameters. Through experiments, we confirmed that our proposed method can acquire the prior probability efficiently and it can realize highly accurate human detection using the obtained prior probability.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient acquisition of human existence priors from motion trajectories\",\"authors\":\"H. Habe, Hidehito Nakagawa, M. Kidode\",\"doi\":\"10.2197/ipsjtcva.2.145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a method for acquiring the prior probability of human existence by using past human trajectories and the color of an image. The priors play important roles in human detection as well as in scene understanding. The proposed method is based on the assumption that a person can exist again in an area where he/she existed in the past. In order to acquire the priors efficiently, a high prior probability is assigned to an area having the same color as past human trajectories. We use a particle filter for representing the prior probability. Therefore, we can represent a complex prior probability using only a few parameters. Through experiments, we confirmed that our proposed method can acquire the prior probability efficiently and it can realize highly accurate human detection using the obtained prior probability.\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/ipsjtcva.2.145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtcva.2.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文报告了一种利用过去的人类轨迹和图像的颜色来获取人类存在的先验概率的方法。先验在人类检测和场景理解中起着重要的作用。所提出的方法是基于一个假设,即一个人可以再次存在于他/她过去存在过的地方。为了有效地获取先验,对与过去人类轨迹具有相同颜色的区域分配高先验概率。我们使用粒子滤波来表示先验概率。因此,我们可以只用几个参数来表示一个复杂的先验概率。通过实验,我们证实了我们的方法可以有效地获取先验概率,并且可以利用得到的先验概率实现高精度的人体检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient acquisition of human existence priors from motion trajectories
This paper reports a method for acquiring the prior probability of human existence by using past human trajectories and the color of an image. The priors play important roles in human detection as well as in scene understanding. The proposed method is based on the assumption that a person can exist again in an area where he/she existed in the past. In order to acquire the priors efficiently, a high prior probability is assigned to an area having the same color as past human trajectories. We use a particle filter for representing the prior probability. Therefore, we can represent a complex prior probability using only a few parameters. Through experiments, we confirmed that our proposed method can acquire the prior probability efficiently and it can realize highly accurate human detection using the obtained prior probability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1