基于多标签分类的搜索结果可视化

Zhihua Wei, D. Miao, Rui Zhao, Chen Xie, Zhifei Zhang
{"title":"基于多标签分类的搜索结果可视化","authors":"Zhihua Wei, D. Miao, Rui Zhao, Chen Xie, Zhifei Zhang","doi":"10.1109/PIC.2010.5687407","DOIUrl":null,"url":null,"abstract":"Search engine has played an important role in information society. However, it is not very easy to find interest information from too much returned search results. Web search visualization system aims at helping users to locate interest documents rapidly from a great amount of returned search results. This paper explores visualization of Web search results based on multi-label text classification method. It conducts a multi-label classification process on the results from search engine. In this framework, users could browse interest information according to category label added by our algorithm. A paralleled Naïve Bayes multi-label classification algorithm is proposed for this application. A two-step feature selection algorithm is constructed to reduce the effect on Naïve Bayes classifier resulted from feature correlation and feature redundancy. A prototype system, named TJ-MLWC, is developed, which has the function of browsing search results by one or several categories.","PeriodicalId":142910,"journal":{"name":"2010 IEEE International Conference on Progress in Informatics and Computing","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Visualizing search results based on multi-label classification\",\"authors\":\"Zhihua Wei, D. Miao, Rui Zhao, Chen Xie, Zhifei Zhang\",\"doi\":\"10.1109/PIC.2010.5687407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Search engine has played an important role in information society. However, it is not very easy to find interest information from too much returned search results. Web search visualization system aims at helping users to locate interest documents rapidly from a great amount of returned search results. This paper explores visualization of Web search results based on multi-label text classification method. It conducts a multi-label classification process on the results from search engine. In this framework, users could browse interest information according to category label added by our algorithm. A paralleled Naïve Bayes multi-label classification algorithm is proposed for this application. A two-step feature selection algorithm is constructed to reduce the effect on Naïve Bayes classifier resulted from feature correlation and feature redundancy. A prototype system, named TJ-MLWC, is developed, which has the function of browsing search results by one or several categories.\",\"PeriodicalId\":142910,\"journal\":{\"name\":\"2010 IEEE International Conference on Progress in Informatics and Computing\",\"volume\":\"185 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Progress in Informatics and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC.2010.5687407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Progress in Informatics and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2010.5687407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

搜索引擎在信息社会中扮演着重要的角色。然而,从大量返回的搜索结果中找到感兴趣的信息并不容易。Web搜索可视化系统旨在帮助用户从大量返回的搜索结果中快速定位感兴趣的文档。本文探讨了基于多标签文本分类方法的Web搜索结果可视化。它对搜索引擎的结果进行多标签分类处理。在该框架中,用户可以根据算法添加的类别标签浏览感兴趣的信息。提出了一种平行的Naïve贝叶斯多标签分类算法。为了减少特征相关性和特征冗余对Naïve贝叶斯分类器的影响,构造了一种两步特征选择算法。开发了一个原型系统TJ-MLWC,该系统具有按一个或多个类别浏览搜索结果的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visualizing search results based on multi-label classification
Search engine has played an important role in information society. However, it is not very easy to find interest information from too much returned search results. Web search visualization system aims at helping users to locate interest documents rapidly from a great amount of returned search results. This paper explores visualization of Web search results based on multi-label text classification method. It conducts a multi-label classification process on the results from search engine. In this framework, users could browse interest information according to category label added by our algorithm. A paralleled Naïve Bayes multi-label classification algorithm is proposed for this application. A two-step feature selection algorithm is constructed to reduce the effect on Naïve Bayes classifier resulted from feature correlation and feature redundancy. A prototype system, named TJ-MLWC, is developed, which has the function of browsing search results by one or several categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data compression of multispectral images for FY-2C geostationary meteorological satellite Redundant De Bruijn graph based location and routing for large-scale peer-to-peer system Content semantic filter based on Domain Ontology An isolated word recognition system based on DSP and improved dynamic time warping algorithm Research on Logistics Carbon Footprint Analysis System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1