肌腱驱动柔性机器人手套的协同致动器建模与设计

M. Xiloyannis, L. Cappello, B. Dinh, S. Yen, L. Masia
{"title":"肌腱驱动柔性机器人手套的协同致动器建模与设计","authors":"M. Xiloyannis, L. Cappello, B. Dinh, S. Yen, L. Masia","doi":"10.1109/BIOROB.2016.7523796","DOIUrl":null,"url":null,"abstract":"The need for a means of assistance in human grasping, to compensate for weakness or to augment performance, is well documented. An appealing new way of doing so is through soft, wearable robots that work in parallel with the human muscles. In this paper we present the design and modelling of a tendon-driving unit that empowers a wearable, soft glove. Being portability one of our main objectives, we use only 1 motor to move 8 degrees of freedom of the hand. To achieve this we use an underactuation strategy based on the human hand's first postural synergy, which explains alone ≈60% of activities of daily living. The constrains imposed by the underactuation strategy are softened, to allow adaptability during grasping, by placing elastic elements in series with the tendons. A simulation of the dynamic behaviour of the glove on a human hand allows us to quantify the magnitude and distribution of the forces involved during usage. These results are used to guide design choices such as the power of the motor and the stiffness of the springs. The designed tendon-driving unit comprises a DC motor which drives an array of spools dimensioned according to the first postural synergy, an electromechanical clutch to hold the hand in position during static posture and a feeder mechanism to avoid slacking of the tendons around the spool. Finally, the tendon-driving unit is tested to verify that it satisfies motion and force characteristics required to assist its wearer in activities of daily living.","PeriodicalId":235222,"journal":{"name":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Modelling and design of a synergy-based actuator for a tendon-driven soft robotic glove\",\"authors\":\"M. Xiloyannis, L. Cappello, B. Dinh, S. Yen, L. Masia\",\"doi\":\"10.1109/BIOROB.2016.7523796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need for a means of assistance in human grasping, to compensate for weakness or to augment performance, is well documented. An appealing new way of doing so is through soft, wearable robots that work in parallel with the human muscles. In this paper we present the design and modelling of a tendon-driving unit that empowers a wearable, soft glove. Being portability one of our main objectives, we use only 1 motor to move 8 degrees of freedom of the hand. To achieve this we use an underactuation strategy based on the human hand's first postural synergy, which explains alone ≈60% of activities of daily living. The constrains imposed by the underactuation strategy are softened, to allow adaptability during grasping, by placing elastic elements in series with the tendons. A simulation of the dynamic behaviour of the glove on a human hand allows us to quantify the magnitude and distribution of the forces involved during usage. These results are used to guide design choices such as the power of the motor and the stiffness of the springs. The designed tendon-driving unit comprises a DC motor which drives an array of spools dimensioned according to the first postural synergy, an electromechanical clutch to hold the hand in position during static posture and a feeder mechanism to avoid slacking of the tendons around the spool. Finally, the tendon-driving unit is tested to verify that it satisfies motion and force characteristics required to assist its wearer in activities of daily living.\",\"PeriodicalId\":235222,\"journal\":{\"name\":\"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOROB.2016.7523796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2016.7523796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

在人类抓握中,需要一种辅助手段来弥补弱点或增强性能,这是有充分记录的。一种吸引人的新方法是通过柔软的、可穿戴的机器人与人类肌肉并行工作。在本文中,我们提出了一种肌腱驱动装置的设计和建模,该装置可用于可穿戴的软手套。便携性是我们的主要目标之一,我们只使用1个电机来移动8个自由度的手。为了实现这一目标,我们使用了基于人手第一次姿势协同的欠驱动策略,仅这一策略就解释了约60%的日常生活活动。由欠驱动策略施加的约束被软化,以允许在抓取过程中的适应性,通过将弹性元件与肌腱串联。对人手手套的动态行为的模拟使我们能够量化使用过程中所涉及的力的大小和分布。这些结果用于指导设计选择,如电机的功率和弹簧的刚度。所设计的肌腱驱动单元包括驱动根据第一姿态协同尺寸的线轴阵列的直流电机、在静态姿态时使手保持在适当位置的机电离合器和防止线轴周围的肌腱松弛的喂料机构。最后,对肌腱驱动单元进行测试,以验证其满足帮助佩戴者进行日常生活活动所需的运动和力特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling and design of a synergy-based actuator for a tendon-driven soft robotic glove
The need for a means of assistance in human grasping, to compensate for weakness or to augment performance, is well documented. An appealing new way of doing so is through soft, wearable robots that work in parallel with the human muscles. In this paper we present the design and modelling of a tendon-driving unit that empowers a wearable, soft glove. Being portability one of our main objectives, we use only 1 motor to move 8 degrees of freedom of the hand. To achieve this we use an underactuation strategy based on the human hand's first postural synergy, which explains alone ≈60% of activities of daily living. The constrains imposed by the underactuation strategy are softened, to allow adaptability during grasping, by placing elastic elements in series with the tendons. A simulation of the dynamic behaviour of the glove on a human hand allows us to quantify the magnitude and distribution of the forces involved during usage. These results are used to guide design choices such as the power of the motor and the stiffness of the springs. The designed tendon-driving unit comprises a DC motor which drives an array of spools dimensioned according to the first postural synergy, an electromechanical clutch to hold the hand in position during static posture and a feeder mechanism to avoid slacking of the tendons around the spool. Finally, the tendon-driving unit is tested to verify that it satisfies motion and force characteristics required to assist its wearer in activities of daily living.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robotic biomarkers in RETT Syndrome: Evaluating stiffness Design of a hydraulic ankle-foot orthosis Role of EMG as a complementary tool for assessment of motor impairment A soft robotic sock device for ankle rehabilitation and prevention of deep vein thrombosis Coupled systems analyses for high-performance robust force control of wearable robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1