带有故障检测估计器的四重自适应冗余

Dohyeung Kim, R. Voyles
{"title":"带有故障检测估计器的四重自适应冗余","authors":"Dohyeung Kim, R. Voyles","doi":"10.1109/COASE.2017.8256160","DOIUrl":null,"url":null,"abstract":"As a result of advances in technology, systems have grown more and more complex, leading to greater opportunities for failure. System fault has become an increasingly significant threat to the reliability and fault tolerance of automation systems. Redundancy of components within the system is one popular method for enhancing fault tolerance. One of the simple and effective methods for fault tolerance that has stood the test of time is Triple Modular Redundancy, which provides not one redundant copy of a critical system component, but two extra copies for a total of three. Ironically, providing three copies of a sensor, for example, only provides tolerance to one failure. It takes four copies to provide resilience to a double-point failure, but this can be expensive in terms of the cost of sensors and installation, wiring, and interface circuitry. We propose Quadruple Adaptive Redundancy, a new method that adds software-based estimation techniques, rather than additional hardware components, to achieve higher levels of robustness with virtually no incremental cost. In this paper, the performance of Quadruple Adaptive Redundancy is verified through computer simulations and compared to Triple Modular Redundancy with one and two induced sensor failures.","PeriodicalId":445441,"journal":{"name":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quadruple adaptive redundancy with fault detection estimator\",\"authors\":\"Dohyeung Kim, R. Voyles\",\"doi\":\"10.1109/COASE.2017.8256160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a result of advances in technology, systems have grown more and more complex, leading to greater opportunities for failure. System fault has become an increasingly significant threat to the reliability and fault tolerance of automation systems. Redundancy of components within the system is one popular method for enhancing fault tolerance. One of the simple and effective methods for fault tolerance that has stood the test of time is Triple Modular Redundancy, which provides not one redundant copy of a critical system component, but two extra copies for a total of three. Ironically, providing three copies of a sensor, for example, only provides tolerance to one failure. It takes four copies to provide resilience to a double-point failure, but this can be expensive in terms of the cost of sensors and installation, wiring, and interface circuitry. We propose Quadruple Adaptive Redundancy, a new method that adds software-based estimation techniques, rather than additional hardware components, to achieve higher levels of robustness with virtually no incremental cost. In this paper, the performance of Quadruple Adaptive Redundancy is verified through computer simulations and compared to Triple Modular Redundancy with one and two induced sensor failures.\",\"PeriodicalId\":445441,\"journal\":{\"name\":\"2017 13th IEEE Conference on Automation Science and Engineering (CASE)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th IEEE Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2017.8256160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2017.8256160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于技术的进步,系统变得越来越复杂,导致更大的失败机会。系统故障已成为自动化系统可靠性和容错性日益严重的威胁。系统内组件冗余是增强容错性的一种常用方法。经过时间考验的简单有效的容错方法之一是Triple Modular Redundancy,它提供的不是关键系统组件的一个冗余副本,而是两个额外副本,总共三个。具有讽刺意味的是,提供三个传感器副本,例如,只提供对一个故障的容忍度。它需要四个副本来提供对双点故障的弹性,但是就传感器和安装、布线和接口电路的成本而言,这可能是昂贵的。我们提出了四倍自适应冗余,这是一种新的方法,它增加了基于软件的估计技术,而不是额外的硬件组件,以实现更高水平的鲁棒性,几乎没有增加成本。本文通过计算机仿真验证了四重自适应冗余的性能,并将四重自适应冗余与单传感器故障和双传感器故障的三模冗余进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quadruple adaptive redundancy with fault detection estimator
As a result of advances in technology, systems have grown more and more complex, leading to greater opportunities for failure. System fault has become an increasingly significant threat to the reliability and fault tolerance of automation systems. Redundancy of components within the system is one popular method for enhancing fault tolerance. One of the simple and effective methods for fault tolerance that has stood the test of time is Triple Modular Redundancy, which provides not one redundant copy of a critical system component, but two extra copies for a total of three. Ironically, providing three copies of a sensor, for example, only provides tolerance to one failure. It takes four copies to provide resilience to a double-point failure, but this can be expensive in terms of the cost of sensors and installation, wiring, and interface circuitry. We propose Quadruple Adaptive Redundancy, a new method that adds software-based estimation techniques, rather than additional hardware components, to achieve higher levels of robustness with virtually no incremental cost. In this paper, the performance of Quadruple Adaptive Redundancy is verified through computer simulations and compared to Triple Modular Redundancy with one and two induced sensor failures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study on performance evaluation and status-based decision for cyber-physical production systems Optimization of deterministic timed weighted marked graphs An optimization-simulation approach for long term care structure assignment problem for elderly people Stochastic simulation of clinical pathways from raw health databases A circuit-breaker use-case operated by a humanoid in aircraft manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1