基于卷积神经网络分类器的冷却风扇组合故障振动分析

A. Dekhane, Adel Djellal, Fouaz Boutebbakh, R. Lakel
{"title":"基于卷积神经网络分类器的冷却风扇组合故障振动分析","authors":"A. Dekhane, Adel Djellal, Fouaz Boutebbakh, R. Lakel","doi":"10.1145/3386723.3387898","DOIUrl":null,"url":null,"abstract":"In this paper, an application of Convolutional Neural Network (CNN) to detect a predefined fault in vibration signal without any feature extraction. The vibration signal, after being normalized, is converted into a 2-D data called vibration image, and these images are passed in the CNN as input to detect whether there is a fault or not. Experiments are carried out with bearing data from the cooling Fan of a cement oven in CILAS-Biskra. Tests are done using different image sizes, and different training/testing data sets.","PeriodicalId":139072,"journal":{"name":"Proceedings of the 3rd International Conference on Networking, Information Systems & Security","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cooling Fan Combined Fault Vibration Analysis Using Convolutional Neural Network Classifier\",\"authors\":\"A. Dekhane, Adel Djellal, Fouaz Boutebbakh, R. Lakel\",\"doi\":\"10.1145/3386723.3387898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an application of Convolutional Neural Network (CNN) to detect a predefined fault in vibration signal without any feature extraction. The vibration signal, after being normalized, is converted into a 2-D data called vibration image, and these images are passed in the CNN as input to detect whether there is a fault or not. Experiments are carried out with bearing data from the cooling Fan of a cement oven in CILAS-Biskra. Tests are done using different image sizes, and different training/testing data sets.\",\"PeriodicalId\":139072,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Networking, Information Systems & Security\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Networking, Information Systems & Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3386723.3387898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Networking, Information Systems & Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386723.3387898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文在不进行特征提取的情况下,应用卷积神经网络(CNN)检测振动信号中的预定义故障。振动信号经过归一化处理后,转换为二维数据,称为振动图像,这些图像作为输入传递到CNN中,用于检测是否存在故障。利用CILAS-Biskra水泥炉冷却风扇的轴承数据进行了实验。测试使用不同的图像大小和不同的训练/测试数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cooling Fan Combined Fault Vibration Analysis Using Convolutional Neural Network Classifier
In this paper, an application of Convolutional Neural Network (CNN) to detect a predefined fault in vibration signal without any feature extraction. The vibration signal, after being normalized, is converted into a 2-D data called vibration image, and these images are passed in the CNN as input to detect whether there is a fault or not. Experiments are carried out with bearing data from the cooling Fan of a cement oven in CILAS-Biskra. Tests are done using different image sizes, and different training/testing data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive-MIMO Configuration of Multipolarized ULA and UCA in 5G Wireless Communications Enhanced Duplicate Count Strategy: Towards New Algorithms to Improve Duplicate Detection Sensors Transposing Technique for Minimizing the Path Loss Effect and Enhancement of Battery Lifetime in Wireless Body Area Sensor Networks A Survey of Intrusion Detection Algorithm in VANET A Review on Cybersecurity: Challenges & Emerging Threats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1