直接:离散图像缩放与增强从个案特定的纹理

Yan-An Chen, Ching-Chun Hsiao, Wen-Hsiao Peng, Ching-Chun Huang
{"title":"直接:离散图像缩放与增强从个案特定的纹理","authors":"Yan-An Chen, Ching-Chun Hsiao, Wen-Hsiao Peng, Ching-Chun Huang","doi":"10.1109/VCIP53242.2021.9675420","DOIUrl":null,"url":null,"abstract":"This paper addresses image rescaling, the task of which is to downscale an input image followed by upscaling for the purposes of transmission, storage, or playback on heterogeneous devices. The state-of-the-art image rescaling network (known as IRN) tackles image downscaling and upscaling as mutually invertible tasks using invertible affine coupling layers. In particular, for upscaling, IRN models the missing high-frequency component by an input-independent (case-agnostic) Gaussian noise. In this work, we take one step further to predict a case-specific high-frequency component from textures embedded in the downscaled image. Moreover, we adopt integer coupling layers to avoid quantizing the downscaled image. When tested on commonly used datasets, the proposed method, termed DIRECT, improves high-resolution reconstruction quality both subjectively and objectively, while maintaining visually pleasing downscaled images.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DIRECT: Discrete Image Rescaling with Enhancement from Case-specific Textures\",\"authors\":\"Yan-An Chen, Ching-Chun Hsiao, Wen-Hsiao Peng, Ching-Chun Huang\",\"doi\":\"10.1109/VCIP53242.2021.9675420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses image rescaling, the task of which is to downscale an input image followed by upscaling for the purposes of transmission, storage, or playback on heterogeneous devices. The state-of-the-art image rescaling network (known as IRN) tackles image downscaling and upscaling as mutually invertible tasks using invertible affine coupling layers. In particular, for upscaling, IRN models the missing high-frequency component by an input-independent (case-agnostic) Gaussian noise. In this work, we take one step further to predict a case-specific high-frequency component from textures embedded in the downscaled image. Moreover, we adopt integer coupling layers to avoid quantizing the downscaled image. When tested on commonly used datasets, the proposed method, termed DIRECT, improves high-resolution reconstruction quality both subjectively and objectively, while maintaining visually pleasing downscaled images.\",\"PeriodicalId\":114062,\"journal\":{\"name\":\"2021 International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP53242.2021.9675420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论图像重缩放,其任务是缩小输入图像,然后在异构设备上进行传输,存储或播放。最先进的图像缩放网络(称为IRN)使用可逆仿射耦合层将图像降尺度和上尺度作为相互可逆的任务来处理。特别是,对于升级,IRN通过输入无关(与情况无关)的高斯噪声对缺失的高频分量进行建模。在这项工作中,我们进一步从嵌入在缩小图像中的纹理中预测特定情况的高频成分。此外,我们还采用整数耦合层来避免图像的量化。当在常用数据集上进行测试时,所提出的方法(称为DIRECT)在主观上和客观上都提高了高分辨率重建质量,同时保持了视觉上令人愉悦的缩小图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DIRECT: Discrete Image Rescaling with Enhancement from Case-specific Textures
This paper addresses image rescaling, the task of which is to downscale an input image followed by upscaling for the purposes of transmission, storage, or playback on heterogeneous devices. The state-of-the-art image rescaling network (known as IRN) tackles image downscaling and upscaling as mutually invertible tasks using invertible affine coupling layers. In particular, for upscaling, IRN models the missing high-frequency component by an input-independent (case-agnostic) Gaussian noise. In this work, we take one step further to predict a case-specific high-frequency component from textures embedded in the downscaled image. Moreover, we adopt integer coupling layers to avoid quantizing the downscaled image. When tested on commonly used datasets, the proposed method, termed DIRECT, improves high-resolution reconstruction quality both subjectively and objectively, while maintaining visually pleasing downscaled images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Seq-Masks: Bridging the gap between appearance and gait modeling for video-based person re-identification Deep Metric Learning for Human Action Recognition with SlowFast Networks LRS-Net: invisible QR Code embedding, detection, and restoration Deep Color Constancy Using Spatio-Temporal Correlation of High-Speed Video Large-Scale Crowdsourcing Subjective Quality Evaluation of Learning-Based Image Coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1