{"title":"用振动声触觉成像传感器识别乳腺良恶性肿瘤","authors":"Nazia Rahman, Chang-Hee Won","doi":"10.1109/SENSORS52175.2022.9967083","DOIUrl":null,"url":null,"abstract":"Tactile imaging sensor determines the tumor's mechanical properties such as size, depth, and Young's modulus based on the principle of total internal reflection of light. To improve the classifying accuracy of the Tactile imaging sensor, we introduce ultrasound signals and estimate the difference in the tumor tactile images. A developed vibro-acoustic tactile imaging sensor was used to classify benign and malignant tumors. We test the developed system on breast tumor phantoms. These vibrated tactile images are analyzed to improve the overall performance of tumor detection.","PeriodicalId":120357,"journal":{"name":"2022 IEEE Sensors","volume":"122 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identifying Benign and Malignant Breast Tumor Using Vibro-acoustic Tactile Imaging Sensor\",\"authors\":\"Nazia Rahman, Chang-Hee Won\",\"doi\":\"10.1109/SENSORS52175.2022.9967083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tactile imaging sensor determines the tumor's mechanical properties such as size, depth, and Young's modulus based on the principle of total internal reflection of light. To improve the classifying accuracy of the Tactile imaging sensor, we introduce ultrasound signals and estimate the difference in the tumor tactile images. A developed vibro-acoustic tactile imaging sensor was used to classify benign and malignant tumors. We test the developed system on breast tumor phantoms. These vibrated tactile images are analyzed to improve the overall performance of tumor detection.\",\"PeriodicalId\":120357,\"journal\":{\"name\":\"2022 IEEE Sensors\",\"volume\":\"122 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS52175.2022.9967083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS52175.2022.9967083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identifying Benign and Malignant Breast Tumor Using Vibro-acoustic Tactile Imaging Sensor
Tactile imaging sensor determines the tumor's mechanical properties such as size, depth, and Young's modulus based on the principle of total internal reflection of light. To improve the classifying accuracy of the Tactile imaging sensor, we introduce ultrasound signals and estimate the difference in the tumor tactile images. A developed vibro-acoustic tactile imaging sensor was used to classify benign and malignant tumors. We test the developed system on breast tumor phantoms. These vibrated tactile images are analyzed to improve the overall performance of tumor detection.