Julian Jarrett, Larissa Ferreira da Silva, Laerte Mello, Sadallo Andere, Gustavo Cruz, M. Brian Blake
{"title":"为众包自我生成劳动力:员工信心是质量的预测指标吗?","authors":"Julian Jarrett, Larissa Ferreira da Silva, Laerte Mello, Sadallo Andere, Gustavo Cruz, M. Brian Blake","doi":"10.1109/HotWeb.2015.9","DOIUrl":null,"url":null,"abstract":"When leveraging the crowd to perform complex tasks, it is imperative to identify the most effective worker for a particular job. Demographic profiles provided by workers, skill self-assessments by workers, and past performance as captured by employers all represent viable data points available within labor markets. Employers often question the validity of a worker's self-assessment of skills and expertise level when selecting workers in context of other information. More specifically, employers would like to answer the question, \"Is worker confidence a predictor of quality?\" In this paper, we discuss the state-of-the-art in recommending crowd workers based on assessment information. A major contribution of our work is an architecture, platform, and push/pull process for categorizing and recommending workers based on available self-assessment information. We present a study exploring the validity of skills input by workers in light of their actual performance and other metrics captured by employers. A further contribution of this approach is the extrapolation of a body of workers to describe the nature of the community more broadly. Through experimentation, within the language-processing domain, we demonstrate a new capability of deriving trends that might help future employers to select appropriate workers.","PeriodicalId":252318,"journal":{"name":"2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Self-Generating a Labor Force for Crowdsourcing: Is Worker Confidence a Predictor of Quality?\",\"authors\":\"Julian Jarrett, Larissa Ferreira da Silva, Laerte Mello, Sadallo Andere, Gustavo Cruz, M. Brian Blake\",\"doi\":\"10.1109/HotWeb.2015.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When leveraging the crowd to perform complex tasks, it is imperative to identify the most effective worker for a particular job. Demographic profiles provided by workers, skill self-assessments by workers, and past performance as captured by employers all represent viable data points available within labor markets. Employers often question the validity of a worker's self-assessment of skills and expertise level when selecting workers in context of other information. More specifically, employers would like to answer the question, \\\"Is worker confidence a predictor of quality?\\\" In this paper, we discuss the state-of-the-art in recommending crowd workers based on assessment information. A major contribution of our work is an architecture, platform, and push/pull process for categorizing and recommending workers based on available self-assessment information. We present a study exploring the validity of skills input by workers in light of their actual performance and other metrics captured by employers. A further contribution of this approach is the extrapolation of a body of workers to describe the nature of the community more broadly. Through experimentation, within the language-processing domain, we demonstrate a new capability of deriving trends that might help future employers to select appropriate workers.\",\"PeriodicalId\":252318,\"journal\":{\"name\":\"2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HotWeb.2015.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HotWeb.2015.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-Generating a Labor Force for Crowdsourcing: Is Worker Confidence a Predictor of Quality?
When leveraging the crowd to perform complex tasks, it is imperative to identify the most effective worker for a particular job. Demographic profiles provided by workers, skill self-assessments by workers, and past performance as captured by employers all represent viable data points available within labor markets. Employers often question the validity of a worker's self-assessment of skills and expertise level when selecting workers in context of other information. More specifically, employers would like to answer the question, "Is worker confidence a predictor of quality?" In this paper, we discuss the state-of-the-art in recommending crowd workers based on assessment information. A major contribution of our work is an architecture, platform, and push/pull process for categorizing and recommending workers based on available self-assessment information. We present a study exploring the validity of skills input by workers in light of their actual performance and other metrics captured by employers. A further contribution of this approach is the extrapolation of a body of workers to describe the nature of the community more broadly. Through experimentation, within the language-processing domain, we demonstrate a new capability of deriving trends that might help future employers to select appropriate workers.