使用机器学习的数据集成

Marcus Birgersson, Gustav Hansson, U. Franke
{"title":"使用机器学习的数据集成","authors":"Marcus Birgersson, Gustav Hansson, U. Franke","doi":"10.1109/EDOCW.2016.7584357","DOIUrl":null,"url":null,"abstract":"Today, enterprise integration and cross-enterprise collaboration is becoming evermore important. The Internet of things, digitization and globalization are pushing continuous growth in the integration market. However, setting up integration systems today is still largely a manual endeavor. Most probably, future integration will need to leverage more automation in order to keep up with demand. This paper presents a first version of a system that uses tools from artificial intelligence and machine learning to ease the integration of information systems, aiming to automate parts of it. Three models are presented and evaluated for precision and recall using data from real, past, integration projects. The results show that it is possible to obtain F0.5 scores in the order of 80% for models trained on a particular kind of data, and in the order of 60%-70% for less specific models trained on a several kinds of data. Such models would be valuable enablers for integration brokers to keep up with demand, and obtain a competitive advantage. Future work includes fusing the results from the different models, and enabling continuous learning from an operational production system.","PeriodicalId":287808,"journal":{"name":"2016 IEEE 20th International Enterprise Distributed Object Computing Workshop (EDOCW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Data Integration Using Machine Learning\",\"authors\":\"Marcus Birgersson, Gustav Hansson, U. Franke\",\"doi\":\"10.1109/EDOCW.2016.7584357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, enterprise integration and cross-enterprise collaboration is becoming evermore important. The Internet of things, digitization and globalization are pushing continuous growth in the integration market. However, setting up integration systems today is still largely a manual endeavor. Most probably, future integration will need to leverage more automation in order to keep up with demand. This paper presents a first version of a system that uses tools from artificial intelligence and machine learning to ease the integration of information systems, aiming to automate parts of it. Three models are presented and evaluated for precision and recall using data from real, past, integration projects. The results show that it is possible to obtain F0.5 scores in the order of 80% for models trained on a particular kind of data, and in the order of 60%-70% for less specific models trained on a several kinds of data. Such models would be valuable enablers for integration brokers to keep up with demand, and obtain a competitive advantage. Future work includes fusing the results from the different models, and enabling continuous learning from an operational production system.\",\"PeriodicalId\":287808,\"journal\":{\"name\":\"2016 IEEE 20th International Enterprise Distributed Object Computing Workshop (EDOCW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 20th International Enterprise Distributed Object Computing Workshop (EDOCW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDOCW.2016.7584357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 20th International Enterprise Distributed Object Computing Workshop (EDOCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDOCW.2016.7584357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

今天,企业集成和跨企业协作变得越来越重要。物联网、数字化、全球化推动集成市场持续增长。然而,今天设置集成系统在很大程度上仍然是一项手工工作。最有可能的是,为了跟上需求,未来的集成将需要利用更多的自动化。本文介绍了一个系统的第一个版本,该系统使用人工智能和机器学习工具来简化信息系统的集成,旨在实现部分自动化。本文提出了三种模型,并利用来自真实、过去和集成项目的数据对其精度和召回率进行了评估。结果表明,对于在特定类型数据上训练的模型,可以获得80%左右的F0.5分数,对于在几种数据上训练的不太特定的模型,可以获得60%-70%的F0.5分数。这样的模型将是集成代理跟上需求并获得竞争优势的有价值的推动者。未来的工作包括融合来自不同模型的结果,并从运营生产系统中进行持续学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Integration Using Machine Learning
Today, enterprise integration and cross-enterprise collaboration is becoming evermore important. The Internet of things, digitization and globalization are pushing continuous growth in the integration market. However, setting up integration systems today is still largely a manual endeavor. Most probably, future integration will need to leverage more automation in order to keep up with demand. This paper presents a first version of a system that uses tools from artificial intelligence and machine learning to ease the integration of information systems, aiming to automate parts of it. Three models are presented and evaluated for precision and recall using data from real, past, integration projects. The results show that it is possible to obtain F0.5 scores in the order of 80% for models trained on a particular kind of data, and in the order of 60%-70% for less specific models trained on a several kinds of data. Such models would be valuable enablers for integration brokers to keep up with demand, and obtain a competitive advantage. Future work includes fusing the results from the different models, and enabling continuous learning from an operational production system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Artifact-Centric Business Process Execution Platform Untangling EA's Long Path of Becoming a Partner for Business Transformation: The Case of Swiss Federal Railways Social Set Visualizer (SoSeVi) II: Interactive Computational Set Analysis of Big Social Data Automated Change Planning for Differential Update IT Systems with State Constraint Message from the CeSCop/ProMoS 2016 Workshop Chairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1