小型工作坊:数据驱动的最优控制分析

Lars Grüne, K. Morris
{"title":"小型工作坊:数据驱动的最优控制分析","authors":"Lars Grüne, K. Morris","doi":"10.4171/owr/2021/23","DOIUrl":null,"url":null,"abstract":". This hybrid mini-workshop discussed recent mathematical methods for analyzing the opportunities and limitations of data-driven and ma-chine-learning approaches to optimal feedback control. The analysis con-cerned all aspects of such approaches, ranging from approximation theory particularly for high-dimensional problems via complexity analysis of algorithms to robustness issues.","PeriodicalId":436142,"journal":{"name":"Oberwolfach Reports","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mini-Workshop: Analysis of Data-driven Optimal Control\",\"authors\":\"Lars Grüne, K. Morris\",\"doi\":\"10.4171/owr/2021/23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This hybrid mini-workshop discussed recent mathematical methods for analyzing the opportunities and limitations of data-driven and ma-chine-learning approaches to optimal feedback control. The analysis con-cerned all aspects of such approaches, ranging from approximation theory particularly for high-dimensional problems via complexity analysis of algorithms to robustness issues.\",\"PeriodicalId\":436142,\"journal\":{\"name\":\"Oberwolfach Reports\",\"volume\":\"188 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oberwolfach Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/owr/2021/23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oberwolfach Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/owr/2021/23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

。这个混合小型研讨会讨论了最近的数学方法,用于分析数据驱动和机器学习方法在最优反馈控制中的机会和局限性。分析涉及这些方法的所有方面,从近似理论,特别是高维问题,通过算法的复杂性分析到鲁棒性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mini-Workshop: Analysis of Data-driven Optimal Control
. This hybrid mini-workshop discussed recent mathematical methods for analyzing the opportunities and limitations of data-driven and ma-chine-learning approaches to optimal feedback control. The analysis con-cerned all aspects of such approaches, ranging from approximation theory particularly for high-dimensional problems via complexity analysis of algorithms to robustness issues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mini-Workshop: Standard Subspaces in Quantum Field Theory and Representation Theory Arbeitsgemeinschaft: Cluster Algebras Mini-Workshop: Mathematics of Many-body Fermionic Systems Mini-Workshop: Combinatorial and Algebraic Structures in Rough Analysis and Related Fields Mathematical Logic: Proof Theory, Constructive Mathematics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1