一种新的多机器人系统全局路径规划的人工蜂群优化算法

Lianhang Dou, Min Li, Y. Li, Qing-Ying Zhao, Jie Li, Zhongya Wang
{"title":"一种新的多机器人系统全局路径规划的人工蜂群优化算法","authors":"Lianhang Dou, Min Li, Y. Li, Qing-Ying Zhao, Jie Li, Zhongya Wang","doi":"10.1109/ROBIO.2014.7090494","DOIUrl":null,"url":null,"abstract":"This paper presents a path planning and collision avoidance method based on artificial bee colony (ABC) optimization algorithm for multi-robot systems. Standard ABC algorithm can find a proper way for the robots quickly, but it still has shortcomings. An improved artificial bee colony optimization algorithm (IABC) is proposed to plan a reasonable collision-free path for each robot of a multi-robot system in complicated environment. Based on standard ABC algorithm, a new objective function is derived for global planning of each robot's path. The initialization strategy and fitness function are also optimized to improve the performance of IABC algorithm. Compared with standard ABC algorithm, IABC algorithm simplifies the parameter setting and achieves better performance. The feasibility and availability of the proposed IABC algorithm have been verified by simulation results.","PeriodicalId":289829,"journal":{"name":"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A novel artificial bee colony optimization algorithm for global path planning of multi-robot systems\",\"authors\":\"Lianhang Dou, Min Li, Y. Li, Qing-Ying Zhao, Jie Li, Zhongya Wang\",\"doi\":\"10.1109/ROBIO.2014.7090494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a path planning and collision avoidance method based on artificial bee colony (ABC) optimization algorithm for multi-robot systems. Standard ABC algorithm can find a proper way for the robots quickly, but it still has shortcomings. An improved artificial bee colony optimization algorithm (IABC) is proposed to plan a reasonable collision-free path for each robot of a multi-robot system in complicated environment. Based on standard ABC algorithm, a new objective function is derived for global planning of each robot's path. The initialization strategy and fitness function are also optimized to improve the performance of IABC algorithm. Compared with standard ABC algorithm, IABC algorithm simplifies the parameter setting and achieves better performance. The feasibility and availability of the proposed IABC algorithm have been verified by simulation results.\",\"PeriodicalId\":289829,\"journal\":{\"name\":\"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2014.7090494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2014.7090494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于人工蜂群优化算法的多机器人系统路径规划与避碰方法。标准ABC算法可以快速找到适合机器人的路径,但仍存在不足。提出了一种改进的人工蜂群优化算法(IABC),为复杂环境下多机器人系统中每个机器人规划合理的无碰撞路径。在标准ABC算法的基础上,导出了机器人路径全局规划的新目标函数。对初始化策略和适应度函数进行了优化,提高了IABC算法的性能。与标准ABC算法相比,IABC算法简化了参数设置,取得了更好的性能。仿真结果验证了所提IABC算法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel artificial bee colony optimization algorithm for global path planning of multi-robot systems
This paper presents a path planning and collision avoidance method based on artificial bee colony (ABC) optimization algorithm for multi-robot systems. Standard ABC algorithm can find a proper way for the robots quickly, but it still has shortcomings. An improved artificial bee colony optimization algorithm (IABC) is proposed to plan a reasonable collision-free path for each robot of a multi-robot system in complicated environment. Based on standard ABC algorithm, a new objective function is derived for global planning of each robot's path. The initialization strategy and fitness function are also optimized to improve the performance of IABC algorithm. Compared with standard ABC algorithm, IABC algorithm simplifies the parameter setting and achieves better performance. The feasibility and availability of the proposed IABC algorithm have been verified by simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Velocity field control with energy compensation toward therapeutic exercise A control-oriented model of underwater snake robots Quadrupedal locomotion based on a muscular activation pattern with stretch-reflex Novelty detection in user behavioural models within ambient assisted living applications: An experimental evaluation Simultaneous allocations of multiple tightly-coupled multi-robot tasks to coalitions of heterogeneous robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1