经典精算模型嵌入神经网络

Jürg Schelldorfer, Mario V. Wuthrich
{"title":"经典精算模型嵌入神经网络","authors":"Jürg Schelldorfer, Mario V. Wuthrich","doi":"10.2139/ssrn.3320525","DOIUrl":null,"url":null,"abstract":"Neural network modeling often suffers the deficiency of not using a systematic way of improving classical statistical regression models. In this tutorial we exemplify the proposal of the editorial of ASTIN Bulletin 2019/1. We embed a classical generalized linear model into a neural network architecture, and we let this nested network approach explore model structure not captured by the classical generalized linear model. In addition, if the generalized linear model is already close to optimal, then the maximum likelihood estimator of the generalized linear model can be used as initialization of the fitting algorithm of the neural network. This saves computational time because we start the fitting algorithm in a reasonable parameter. As a by-product of our derivations, we present embedding layers and representation learning which often provides a more efficient treatment of categorical features within neural networks than dummy and one-hot encoding.","PeriodicalId":406666,"journal":{"name":"Applied Computing eJournal","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Nesting Classical Actuarial Models into Neural Networks\",\"authors\":\"Jürg Schelldorfer, Mario V. Wuthrich\",\"doi\":\"10.2139/ssrn.3320525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural network modeling often suffers the deficiency of not using a systematic way of improving classical statistical regression models. In this tutorial we exemplify the proposal of the editorial of ASTIN Bulletin 2019/1. We embed a classical generalized linear model into a neural network architecture, and we let this nested network approach explore model structure not captured by the classical generalized linear model. In addition, if the generalized linear model is already close to optimal, then the maximum likelihood estimator of the generalized linear model can be used as initialization of the fitting algorithm of the neural network. This saves computational time because we start the fitting algorithm in a reasonable parameter. As a by-product of our derivations, we present embedding layers and representation learning which often provides a more efficient treatment of categorical features within neural networks than dummy and one-hot encoding.\",\"PeriodicalId\":406666,\"journal\":{\"name\":\"Applied Computing eJournal\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3320525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3320525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

神经网络建模的缺点是没有对经典统计回归模型进行系统的改进。在本教程中,我们举例说明ASTIN公报2019/1编辑的建议。我们将经典广义线性模型嵌入到神经网络架构中,并让这种嵌套网络方法探索经典广义线性模型未捕获的模型结构。此外,如果广义线性模型已经接近最优,那么广义线性模型的极大似然估计量可以作为神经网络拟合算法的初始化。这节省了计算时间,因为我们从一个合理的参数开始拟合算法。作为我们推导的副产品,我们提出了嵌入层和表示学习,它们通常比虚拟编码和单热编码更有效地处理神经网络中的分类特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nesting Classical Actuarial Models into Neural Networks
Neural network modeling often suffers the deficiency of not using a systematic way of improving classical statistical regression models. In this tutorial we exemplify the proposal of the editorial of ASTIN Bulletin 2019/1. We embed a classical generalized linear model into a neural network architecture, and we let this nested network approach explore model structure not captured by the classical generalized linear model. In addition, if the generalized linear model is already close to optimal, then the maximum likelihood estimator of the generalized linear model can be used as initialization of the fitting algorithm of the neural network. This saves computational time because we start the fitting algorithm in a reasonable parameter. As a by-product of our derivations, we present embedding layers and representation learning which often provides a more efficient treatment of categorical features within neural networks than dummy and one-hot encoding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimating the Elasticity of Consumer Prices to the Exchange Rate: An Accounting Approach The Role of Absorptive Capacity and Employee Empowerment in Digital Transformation of SMEs Apple's Mounting App Store Woes SEPs Licensing Across the Supply Chain: An Antitrust Perspective An Analysis on the Implementation of Air Pollution Monitoring System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1