对未知数量的信号源进行自适应分离

Z. Malouche, O. Macchi
{"title":"对未知数量的信号源进行自适应分离","authors":"Z. Malouche, O. Macchi","doi":"10.1109/HOST.1997.613534","DOIUrl":null,"url":null,"abstract":"The problem of separation of mixed sources is addressed in this paper. To solve this problem, at least as many observations as sources are needed. In particular, the number of sources can be unknown. The separation system is a linear network updated with a stochastic descent algorithm to minimize some separation criterion. A first algorithm separates sources with positive kurtosises while a second one separates sources with negative kurtosises. For both, the performances are independent of the mixture. Besides, in the noisy case, when there are more sensors than sources, the additional outputs merely generate noise.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adaptive separation of an unknown number of sources\",\"authors\":\"Z. Malouche, O. Macchi\",\"doi\":\"10.1109/HOST.1997.613534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of separation of mixed sources is addressed in this paper. To solve this problem, at least as many observations as sources are needed. In particular, the number of sources can be unknown. The separation system is a linear network updated with a stochastic descent algorithm to minimize some separation criterion. A first algorithm separates sources with positive kurtosises while a second one separates sources with negative kurtosises. For both, the performances are independent of the mixture. Besides, in the noisy case, when there are more sensors than sources, the additional outputs merely generate noise.\",\"PeriodicalId\":305928,\"journal\":{\"name\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOST.1997.613534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了混合源的分离问题。要解决这个问题,至少需要和源一样多的观测值。特别是,源的数量可能是未知的。分离系统是一个用随机下降算法更新的线性网络,以最小化某些分离准则。第一种算法分离具有正峰度的源,第二种算法分离具有负峰度的源。两者的表现都与混合物无关。此外,在有噪声的情况下,当传感器多于源时,额外的输出只会产生噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive separation of an unknown number of sources
The problem of separation of mixed sources is addressed in this paper. To solve this problem, at least as many observations as sources are needed. In particular, the number of sources can be unknown. The separation system is a linear network updated with a stochastic descent algorithm to minimize some separation criterion. A first algorithm separates sources with positive kurtosises while a second one separates sources with negative kurtosises. For both, the performances are independent of the mixture. Besides, in the noisy case, when there are more sensors than sources, the additional outputs merely generate noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Narrow band source separation in wide band context applications to array signal processing Higher-order statistics for tissue characterization from ultrasound images An iterative mixed norm image restoration algorithm Comparison between asymmetric generalized Gaussian (AGG) and symmetric-/spl alpha/-stable (S/spl alpha/S) noise models for signal estimation in non Gaussian environments Linear algebraic approaches for (almost) periodic moving average system identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1