Hai-Nam Le, Van-Sang Doan, D. Le, Huu-Hung Nguyen, Thien Huynh-The, Khanh Le-Ha, Van‐Phuc Hoang
{"title":"基于微多普勒雷达的无人机检测","authors":"Hai-Nam Le, Van-Sang Doan, D. Le, Huu-Hung Nguyen, Thien Huynh-The, Khanh Le-Ha, Van‐Phuc Hoang","doi":"10.1109/ATC50776.2020.9255454","DOIUrl":null,"url":null,"abstract":"This paper demonstrates the performance evaluation of UAV detection based on micro-Doppler radar image data with the proposed inception-residual neural network (IRNN). Accordingly, the network is designed and analyzed by changing network hyper-parameters through experiment with the Real Doppler RAD-DAR (RDRD) dataset that is collected by the practical measurements. Numerical analysis results show that the proposed network with 16 filters yield a good trade-off between accuracy and time-consuming performances. Moreover, the network is taken into account for competing with three other networks. Due to inception-residual structure, the proposed network remarkably outperforms other ones.","PeriodicalId":218972,"journal":{"name":"2020 International Conference on Advanced Technologies for Communications (ATC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Micro-Doppler-Radar-Based UAV Detection Using Inception-Residual Neural Network\",\"authors\":\"Hai-Nam Le, Van-Sang Doan, D. Le, Huu-Hung Nguyen, Thien Huynh-The, Khanh Le-Ha, Van‐Phuc Hoang\",\"doi\":\"10.1109/ATC50776.2020.9255454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates the performance evaluation of UAV detection based on micro-Doppler radar image data with the proposed inception-residual neural network (IRNN). Accordingly, the network is designed and analyzed by changing network hyper-parameters through experiment with the Real Doppler RAD-DAR (RDRD) dataset that is collected by the practical measurements. Numerical analysis results show that the proposed network with 16 filters yield a good trade-off between accuracy and time-consuming performances. Moreover, the network is taken into account for competing with three other networks. Due to inception-residual structure, the proposed network remarkably outperforms other ones.\",\"PeriodicalId\":218972,\"journal\":{\"name\":\"2020 International Conference on Advanced Technologies for Communications (ATC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Advanced Technologies for Communications (ATC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATC50776.2020.9255454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Advanced Technologies for Communications (ATC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATC50776.2020.9255454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Micro-Doppler-Radar-Based UAV Detection Using Inception-Residual Neural Network
This paper demonstrates the performance evaluation of UAV detection based on micro-Doppler radar image data with the proposed inception-residual neural network (IRNN). Accordingly, the network is designed and analyzed by changing network hyper-parameters through experiment with the Real Doppler RAD-DAR (RDRD) dataset that is collected by the practical measurements. Numerical analysis results show that the proposed network with 16 filters yield a good trade-off between accuracy and time-consuming performances. Moreover, the network is taken into account for competing with three other networks. Due to inception-residual structure, the proposed network remarkably outperforms other ones.