{"title":"基于核的Foley-Sammon变换特征提取","authors":"Zhenzhou Chen","doi":"10.1109/SNPD.2007.206","DOIUrl":null,"url":null,"abstract":"A method KFST (Foley-Sammon transform with kernels)is proposed which is based on FST (Foley-Sammon transform) and kernel tricks. The projectors onto the directions derived by KFST can be used for class-specific feature extraction. The algorithm is carried out in a feature space associated with kernel functions, hence it can be used to construct a large class of nonlinear feature extractors. Linear feature extraction in feature space corresponds to nonlinear feature extraction in input space. KFST is proven to correspond to a generalized eigenvalue problem. Lastly, our method is applied to digits and images recognition problems, and the experimental results show that present method is superior to the existing methods in term of space distribution and correct classification rate.","PeriodicalId":197058,"journal":{"name":"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feature Extraction by Foley-Sammon Transform with Kernels\",\"authors\":\"Zhenzhou Chen\",\"doi\":\"10.1109/SNPD.2007.206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method KFST (Foley-Sammon transform with kernels)is proposed which is based on FST (Foley-Sammon transform) and kernel tricks. The projectors onto the directions derived by KFST can be used for class-specific feature extraction. The algorithm is carried out in a feature space associated with kernel functions, hence it can be used to construct a large class of nonlinear feature extractors. Linear feature extraction in feature space corresponds to nonlinear feature extraction in input space. KFST is proven to correspond to a generalized eigenvalue problem. Lastly, our method is applied to digits and images recognition problems, and the experimental results show that present method is superior to the existing methods in term of space distribution and correct classification rate.\",\"PeriodicalId\":197058,\"journal\":{\"name\":\"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNPD.2007.206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD.2007.206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于Foley-Sammon变换和核技巧,提出了一种带核的Foley-Sammon变换方法KFST。KFST导出的方向上的投影可以用于特定类的特征提取。该算法是在与核函数相关的特征空间中进行的,因此可以用来构造大量的非线性特征提取器。特征空间中的线性特征提取对应于输入空间中的非线性特征提取。证明了KFST对应于一个广义特征值问题。最后,将该方法应用于数字和图像识别问题,实验结果表明,该方法在空间分布和正确分类率方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature Extraction by Foley-Sammon Transform with Kernels
A method KFST (Foley-Sammon transform with kernels)is proposed which is based on FST (Foley-Sammon transform) and kernel tricks. The projectors onto the directions derived by KFST can be used for class-specific feature extraction. The algorithm is carried out in a feature space associated with kernel functions, hence it can be used to construct a large class of nonlinear feature extractors. Linear feature extraction in feature space corresponds to nonlinear feature extraction in input space. KFST is proven to correspond to a generalized eigenvalue problem. Lastly, our method is applied to digits and images recognition problems, and the experimental results show that present method is superior to the existing methods in term of space distribution and correct classification rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An RBF Network Based Beamformer for Mimo Wireless Communication Systems Tailoring Software Evolution Process Communication Optimization Algorithms based on Extend Data Flow Graph Improving Blind Equalization Algorithm for Wireless Communication Systems Speech Enhancement Employing Modified a Priori SNR Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1