基于自然语言处理技术的自动自顶向下角色工程方法

M. Narouei, Hassan Takabi
{"title":"基于自然语言处理技术的自动自顶向下角色工程方法","authors":"M. Narouei, Hassan Takabi","doi":"10.1145/2752952.2752958","DOIUrl":null,"url":null,"abstract":"Role Based Access Control (RBAC) is the most widely used model for access control due to the ease of administration as well as economic benefits it provides. In order to deploy an RBAC system, one requires to first identify a complete set of roles. This process, known as role engineering, has been identified as one of the costliest tasks in migrating to RBAC. In this paper, we propose a top-down role engineering approach and take the first steps towards using natural language processing techniques to extract policies from unrestricted natural language documents. Most organizations have high-level requirement specifications that include a set of access control policies which describes allowable operations for the system. However, it is very time consuming, labor-intensive, and error-prone to manually sift through these natural language documents to identify and extract access control policies. Our goal is to automate this process to reduce manual efforts and human errors. We apply natural language processing techniques, more specifically semantic role labeling to automatically extract access control policies from unrestricted natural language documents, define roles, and build an RBAC model. Our preliminary results are promising and by applying semantic role labeling to automatically identify predicate-argument structure, and a set of predefined rules on the extracted arguments, we were able correctly identify access control policies with a precision of 75%, recall of 88%, and F1 score of 80%.","PeriodicalId":305802,"journal":{"name":"Proceedings of the 20th ACM Symposium on Access Control Models and Technologies","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Towards an Automatic Top-down Role Engineering Approach Using Natural Language Processing Techniques\",\"authors\":\"M. Narouei, Hassan Takabi\",\"doi\":\"10.1145/2752952.2752958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Role Based Access Control (RBAC) is the most widely used model for access control due to the ease of administration as well as economic benefits it provides. In order to deploy an RBAC system, one requires to first identify a complete set of roles. This process, known as role engineering, has been identified as one of the costliest tasks in migrating to RBAC. In this paper, we propose a top-down role engineering approach and take the first steps towards using natural language processing techniques to extract policies from unrestricted natural language documents. Most organizations have high-level requirement specifications that include a set of access control policies which describes allowable operations for the system. However, it is very time consuming, labor-intensive, and error-prone to manually sift through these natural language documents to identify and extract access control policies. Our goal is to automate this process to reduce manual efforts and human errors. We apply natural language processing techniques, more specifically semantic role labeling to automatically extract access control policies from unrestricted natural language documents, define roles, and build an RBAC model. Our preliminary results are promising and by applying semantic role labeling to automatically identify predicate-argument structure, and a set of predefined rules on the extracted arguments, we were able correctly identify access control policies with a precision of 75%, recall of 88%, and F1 score of 80%.\",\"PeriodicalId\":305802,\"journal\":{\"name\":\"Proceedings of the 20th ACM Symposium on Access Control Models and Technologies\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th ACM Symposium on Access Control Models and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2752952.2752958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM Symposium on Access Control Models and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2752952.2752958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

基于角色的访问控制(RBAC)是使用最广泛的访问控制模型,因为它易于管理和提供经济效益。为了部署RBAC系统,需要首先确定一组完整的角色。这个过程被称为角色工程,它被认为是迁移到RBAC过程中成本最高的任务之一。在本文中,我们提出了一种自上而下的角色工程方法,并迈出了使用自然语言处理技术从不受限制的自然语言文档中提取策略的第一步。大多数组织都有高级需求规范,其中包括一组访问控制策略,这些策略描述了系统允许的操作。但是,手动筛选这些自然语言文档来识别和提取访问控制策略非常耗时、费力且容易出错。我们的目标是使这个过程自动化,以减少手工工作和人为错误。我们应用自然语言处理技术,更具体地说,是语义角色标记,从不受限制的自然语言文档中自动提取访问控制策略,定义角色,并构建RBAC模型。我们的初步结果是有希望的,通过应用语义角色标记来自动识别谓词参数结构,并在提取的参数上使用一组预定义的规则,我们能够以75%的精度、88%的召回率和80%的F1分数正确识别访问控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards an Automatic Top-down Role Engineering Approach Using Natural Language Processing Techniques
Role Based Access Control (RBAC) is the most widely used model for access control due to the ease of administration as well as economic benefits it provides. In order to deploy an RBAC system, one requires to first identify a complete set of roles. This process, known as role engineering, has been identified as one of the costliest tasks in migrating to RBAC. In this paper, we propose a top-down role engineering approach and take the first steps towards using natural language processing techniques to extract policies from unrestricted natural language documents. Most organizations have high-level requirement specifications that include a set of access control policies which describes allowable operations for the system. However, it is very time consuming, labor-intensive, and error-prone to manually sift through these natural language documents to identify and extract access control policies. Our goal is to automate this process to reduce manual efforts and human errors. We apply natural language processing techniques, more specifically semantic role labeling to automatically extract access control policies from unrestricted natural language documents, define roles, and build an RBAC model. Our preliminary results are promising and by applying semantic role labeling to automatically identify predicate-argument structure, and a set of predefined rules on the extracted arguments, we were able correctly identify access control policies with a precision of 75%, recall of 88%, and F1 score of 80%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Missing Attributes in Access Control: Non-deterministic and Probabilistic Attribute Retrieval Towards Attribute-Based Authorisation for Bidirectional Programming Hard Instances for Verification Problems in Access Control Mitigating Access Control Vulnerabilities through Interactive Static Analysis A Logical Approach to Restricting Access in Online Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1