含频备用电源光伏-电池系统的强化学习控制算法

Niklas Ebell, F. Heinrich, Jonas Schlund, M. Pruckner
{"title":"含频备用电源光伏-电池系统的强化学习控制算法","authors":"Niklas Ebell, F. Heinrich, Jonas Schlund, M. Pruckner","doi":"10.1109/SmartGridComm.2018.8587480","DOIUrl":null,"url":null,"abstract":"Rooftop-installed photovoltaic systems for residential buildings withbattery energy storage system are increasing. Controlling power flows of volatile and unpredictable renewable energy sources in such a system is challenging. Therefore, in this paper we present an algorithm based on Reinforcement Learning to control the power flows of a residential household with a battery energy storage system and a photovoltaic system using neural networks as a function approximation. In a nondeterministic environment the optimal choice of a series of actions to be taken is complex. Training a Reinforcement Learning algorithm, these complex patterns can be learned. The task of the energy storage is to reduce the energy feed-in to the electric grid as well as to improve power system stability by providing frequency containment reserve power to the transmission system operator. Our model includes the profiles of the grid’s frequency, photovoltaic power generation and the electric load of two different households for one year. The first household is used to train the algorithm and to adjust the weights of the neural network to estimate the state-action values. The second household is used to test the functionality of the algorithm on unseen data. To evaluate the behavior of the Reinforcement Learning algorithm the results are compared to a simulation of rule-based control. As a result, after 300 episodes of training, the algorithm is able to reduce the energy consumption from the grid up to 7.8% compared to the rule-based control system managing the system’s power flows.","PeriodicalId":213523,"journal":{"name":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Reinforcement Learning Control Algorithm for a PV-Battery-System Providing Frequency Containment Reserve Power\",\"authors\":\"Niklas Ebell, F. Heinrich, Jonas Schlund, M. Pruckner\",\"doi\":\"10.1109/SmartGridComm.2018.8587480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rooftop-installed photovoltaic systems for residential buildings withbattery energy storage system are increasing. Controlling power flows of volatile and unpredictable renewable energy sources in such a system is challenging. Therefore, in this paper we present an algorithm based on Reinforcement Learning to control the power flows of a residential household with a battery energy storage system and a photovoltaic system using neural networks as a function approximation. In a nondeterministic environment the optimal choice of a series of actions to be taken is complex. Training a Reinforcement Learning algorithm, these complex patterns can be learned. The task of the energy storage is to reduce the energy feed-in to the electric grid as well as to improve power system stability by providing frequency containment reserve power to the transmission system operator. Our model includes the profiles of the grid’s frequency, photovoltaic power generation and the electric load of two different households for one year. The first household is used to train the algorithm and to adjust the weights of the neural network to estimate the state-action values. The second household is used to test the functionality of the algorithm on unseen data. To evaluate the behavior of the Reinforcement Learning algorithm the results are compared to a simulation of rule-based control. As a result, after 300 episodes of training, the algorithm is able to reduce the energy consumption from the grid up to 7.8% compared to the rule-based control system managing the system’s power flows.\",\"PeriodicalId\":213523,\"journal\":{\"name\":\"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2018.8587480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2018.8587480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

住宅屋顶光伏电池储能系统越来越多。在这样一个系统中控制易变和不可预测的可再生能源的功率流是具有挑战性的。因此,在本文中,我们提出了一种基于强化学习的算法,以神经网络作为函数逼近来控制具有电池储能系统和光伏系统的住宅家庭的功率流。在不确定的环境中,要采取的一系列行动的最佳选择是复杂的。训练一个强化学习算法,这些复杂的模式可以学习。储能的任务是通过向输电系统运营商提供频率控制备用电力,减少电网的馈能,提高电力系统的稳定性。我们的模型包括电网频率、光伏发电和两个不同家庭一年的电力负荷。第一个家庭用于训练算法和调整神经网络的权值以估计状态-动作值。第二个家庭用于测试算法在未见过的数据上的功能。为了评估强化学习算法的行为,将结果与基于规则的控制的模拟进行比较。结果,经过300集的训练,与基于规则的控制系统管理系统的功率流相比,该算法能够将电网能耗降低7.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement Learning Control Algorithm for a PV-Battery-System Providing Frequency Containment Reserve Power
Rooftop-installed photovoltaic systems for residential buildings withbattery energy storage system are increasing. Controlling power flows of volatile and unpredictable renewable energy sources in such a system is challenging. Therefore, in this paper we present an algorithm based on Reinforcement Learning to control the power flows of a residential household with a battery energy storage system and a photovoltaic system using neural networks as a function approximation. In a nondeterministic environment the optimal choice of a series of actions to be taken is complex. Training a Reinforcement Learning algorithm, these complex patterns can be learned. The task of the energy storage is to reduce the energy feed-in to the electric grid as well as to improve power system stability by providing frequency containment reserve power to the transmission system operator. Our model includes the profiles of the grid’s frequency, photovoltaic power generation and the electric load of two different households for one year. The first household is used to train the algorithm and to adjust the weights of the neural network to estimate the state-action values. The second household is used to test the functionality of the algorithm on unseen data. To evaluate the behavior of the Reinforcement Learning algorithm the results are compared to a simulation of rule-based control. As a result, after 300 episodes of training, the algorithm is able to reduce the energy consumption from the grid up to 7.8% compared to the rule-based control system managing the system’s power flows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Behind-the-Meter Solar Generation Disaggregation using Consumer Mixture Models Coordinated Planning of Multi-Energy System with District Heating Network A Cost-efficient Software Testbed for Cyber-Physical Security in IEC 61850-based Substations Joint Optimal Power Flow Routing and Decentralized Scheduling with Vehicle-to-Grid Regulation Service Energy Flexibility for Systems with large Thermal Masses with Applications to Shopping Centers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1