{"title":"在存在动态切削力和缺陷的情况下,轴承支承的主轴所消耗的能量","authors":"Anoire Ben Jdidia , Taissir Hentati , Alain Bellacicco , Mohamed Taoufik Khabou , Alain Riviere , Mohamed Haddar","doi":"10.1016/j.crme.2019.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>A machine tool spindle system model is proposed in this paper to investigate the non-linear face-milling cutting forces behavior, which are neglected in the literature, in order to predict the total mechanical power of a spindle. A simulation of the structure of the spindle based on the finite-element method is elaborated to estimate the variable cutting forces and then the variable power loss generated by bearings, considering the angular position and contact angles of the variable balls. Experiments are elaborated to compare the experimental power values with the predicted results. Particular attention is paid to different types of defects (inner ring spalling, outer ring spalling, eccentricity, and unbalance) in order to study their impact on the power consumed by the spindle during the approach and cutting phases under different rotating conditions.</p></div>","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"347 10","pages":"Pages 685-700"},"PeriodicalIF":1.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crme.2019.09.002","citationCount":"2","resultStr":"{\"title\":\"Energy consumed by a bearing supported spindle in the presence of a dynamic cutting force and of defects\",\"authors\":\"Anoire Ben Jdidia , Taissir Hentati , Alain Bellacicco , Mohamed Taoufik Khabou , Alain Riviere , Mohamed Haddar\",\"doi\":\"10.1016/j.crme.2019.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A machine tool spindle system model is proposed in this paper to investigate the non-linear face-milling cutting forces behavior, which are neglected in the literature, in order to predict the total mechanical power of a spindle. A simulation of the structure of the spindle based on the finite-element method is elaborated to estimate the variable cutting forces and then the variable power loss generated by bearings, considering the angular position and contact angles of the variable balls. Experiments are elaborated to compare the experimental power values with the predicted results. Particular attention is paid to different types of defects (inner ring spalling, outer ring spalling, eccentricity, and unbalance) in order to study their impact on the power consumed by the spindle during the approach and cutting phases under different rotating conditions.</p></div>\",\"PeriodicalId\":50997,\"journal\":{\"name\":\"Comptes Rendus Mecanique\",\"volume\":\"347 10\",\"pages\":\"Pages 685-700\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.crme.2019.09.002\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mecanique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1631072119301378\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1631072119301378","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Energy consumed by a bearing supported spindle in the presence of a dynamic cutting force and of defects
A machine tool spindle system model is proposed in this paper to investigate the non-linear face-milling cutting forces behavior, which are neglected in the literature, in order to predict the total mechanical power of a spindle. A simulation of the structure of the spindle based on the finite-element method is elaborated to estimate the variable cutting forces and then the variable power loss generated by bearings, considering the angular position and contact angles of the variable balls. Experiments are elaborated to compare the experimental power values with the predicted results. Particular attention is paid to different types of defects (inner ring spalling, outer ring spalling, eccentricity, and unbalance) in order to study their impact on the power consumed by the spindle during the approach and cutting phases under different rotating conditions.
期刊介绍:
The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, …
The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.