工业环境对时钟源的影响及其对IEEE 1588同步精度的影响研究

S. Schriegel, J. Jasperneite
{"title":"工业环境对时钟源的影响及其对IEEE 1588同步精度的影响研究","authors":"S. Schriegel, J. Jasperneite","doi":"10.1109/ISPCS.2007.4383773","DOIUrl":null,"url":null,"abstract":"Networked Industrial Devices must fulfill requirements regarding temperature ranges, noise immunities, and mechanical loads (e.g. DIN EN 60068-2-6). The effects of these environmental conditions on the stability of the frequency of clock sources are well studied [1, 2]. However the influence on the synchronization characteristics of IEEE 1588 can be derived only partly from these investigations. The dependency between the frequency drift (df/dt) and the transmission period of the synchronization frames T is very important for the achievable accuracy of IEEE 1588-based networks. In order to examine these effects, a novel measuring method is proposed in this paper. The results of exemplary measurements at a crystal oscillator with different temperature and mechanical loads will be discussed. These results are compared with the existing requirements for industrial communication systems, especially for the Industrial Ethernet system PROFINET. The objective is to derive coherences and rules for the implementation of functional components of the synchronization procedure.","PeriodicalId":258197,"journal":{"name":"2007 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Investigation of Industrial Environmental Influences on Clock Sources and their Effect on the Synchronization Accuracy of IEEE 1588\",\"authors\":\"S. Schriegel, J. Jasperneite\",\"doi\":\"10.1109/ISPCS.2007.4383773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Networked Industrial Devices must fulfill requirements regarding temperature ranges, noise immunities, and mechanical loads (e.g. DIN EN 60068-2-6). The effects of these environmental conditions on the stability of the frequency of clock sources are well studied [1, 2]. However the influence on the synchronization characteristics of IEEE 1588 can be derived only partly from these investigations. The dependency between the frequency drift (df/dt) and the transmission period of the synchronization frames T is very important for the achievable accuracy of IEEE 1588-based networks. In order to examine these effects, a novel measuring method is proposed in this paper. The results of exemplary measurements at a crystal oscillator with different temperature and mechanical loads will be discussed. These results are compared with the existing requirements for industrial communication systems, especially for the Industrial Ethernet system PROFINET. The objective is to derive coherences and rules for the implementation of functional components of the synchronization procedure.\",\"PeriodicalId\":258197,\"journal\":{\"name\":\"2007 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPCS.2007.4383773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPCS.2007.4383773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

联网工业设备必须满足有关温度范围,噪声抗扰性和机械负载的要求(例如DIN EN 60068-2-6)。这些环境条件对时钟源频率稳定性的影响已经得到了很好的研究[1,2]。然而,这些研究只能部分地影响IEEE 1588的同步特性。频率漂移(df/dt)与同步帧传输周期T之间的依赖关系对基于IEEE 1588的网络的可实现精度非常重要。为了检验这些影响,本文提出了一种新的测量方法。本文将讨论在不同温度和机械负荷下晶体振荡器的示例性测量结果。这些结果与现有工业通信系统,特别是工业以太网系统PROFINET的要求进行了比较。目标是为同步过程的功能组件的实现派生一致性和规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of Industrial Environmental Influences on Clock Sources and their Effect on the Synchronization Accuracy of IEEE 1588
Networked Industrial Devices must fulfill requirements regarding temperature ranges, noise immunities, and mechanical loads (e.g. DIN EN 60068-2-6). The effects of these environmental conditions on the stability of the frequency of clock sources are well studied [1, 2]. However the influence on the synchronization characteristics of IEEE 1588 can be derived only partly from these investigations. The dependency between the frequency drift (df/dt) and the transmission period of the synchronization frames T is very important for the achievable accuracy of IEEE 1588-based networks. In order to examine these effects, a novel measuring method is proposed in this paper. The results of exemplary measurements at a crystal oscillator with different temperature and mechanical loads will be discussed. These results are compared with the existing requirements for industrial communication systems, especially for the Industrial Ethernet system PROFINET. The objective is to derive coherences and rules for the implementation of functional components of the synchronization procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Object-oriented Model for IEEE 1588 Standard IEEE 1588 applied in the environment of high availability LANs Clock Synchronization for Wireless Positioning of COTS Mobile Nodes Precise Time Synchronization in Semiconductor Manufacturing Modeling and Simulation Analysis of PTP Clock Servo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1