一种用于人工神经网络计算的变精度收缩结构

Amine Bermak, D. Martinez
{"title":"一种用于人工神经网络计算的变精度收缩结构","authors":"Amine Bermak, D. Martinez","doi":"10.1109/MNNFS.1996.493814","DOIUrl":null,"url":null,"abstract":"When Artificial Neural Networks (ANNs) are implemented in VLSI with fixed precision arithmetic, the accumulation of numerical errors may lead to results which are completely inaccurate. To avoid this, we propose a variable-precision arithmetic in which the precision of the computation is specified by the user at each layer in the network. This paper presents a top-down approach for designing an efficient bit-level systolic architecture for variable precision neural computation.","PeriodicalId":151891,"journal":{"name":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A variable-precision systolic architecture for ANN computation\",\"authors\":\"Amine Bermak, D. Martinez\",\"doi\":\"10.1109/MNNFS.1996.493814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When Artificial Neural Networks (ANNs) are implemented in VLSI with fixed precision arithmetic, the accumulation of numerical errors may lead to results which are completely inaccurate. To avoid this, we propose a variable-precision arithmetic in which the precision of the computation is specified by the user at each layer in the network. This paper presents a top-down approach for designing an efficient bit-level systolic architecture for variable precision neural computation.\",\"PeriodicalId\":151891,\"journal\":{\"name\":\"Proceedings of Fifth International Conference on Microelectronics for Neural Networks\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Fifth International Conference on Microelectronics for Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MNNFS.1996.493814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MNNFS.1996.493814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在固定精度算法的超大规模集成电路中实现人工神经网络时,数值误差的累积可能导致结果完全不准确。为了避免这种情况,我们提出了一种变精度算法,其中计算的精度由用户在网络中的每一层指定。本文提出了一种自顶向下的方法来设计一种有效的位级收缩结构,用于变精度神经计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A variable-precision systolic architecture for ANN computation
When Artificial Neural Networks (ANNs) are implemented in VLSI with fixed precision arithmetic, the accumulation of numerical errors may lead to results which are completely inaccurate. To avoid this, we propose a variable-precision arithmetic in which the precision of the computation is specified by the user at each layer in the network. This paper presents a top-down approach for designing an efficient bit-level systolic architecture for variable precision neural computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retinomorphic vision systems Low power, low voltage conductance-mode CMOS analog neuron A digital neural network LSI using sparse memory access architecture Adaptive two-dimensional neuron grids A correlation-based network for hardware implementations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1