{"title":"查询大型数据库","authors":"Nathan Beneke","doi":"10.61366/2576-2176.1065","DOIUrl":null,"url":null,"abstract":"This paper investigates two approaches to improving query times on large relational databases. The first technique capitalizes on the knowledge of a database’s structures and properties one typically has. This technique can execute some queries exactly in a constant, bounded amount of time. When this technique cannot be used to exactly execute a query we show how it can still be used to drastically lower the run-time on the query while getting a good approximation of the exact result. We also discuss the complexity of deciding whether a query is evaluable in this way, both theoretically and practically. The second approach approximates aggregate queries by incorporating only part of the data, rather than all of the data the query pertains to. We briefly investigate an established method of sampling a random subset of the data, and then a newer method which partially reads every tuple and puts deterministic error bounds on the results.","PeriodicalId":113813,"journal":{"name":"Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Querying Large Databases\",\"authors\":\"Nathan Beneke\",\"doi\":\"10.61366/2576-2176.1065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates two approaches to improving query times on large relational databases. The first technique capitalizes on the knowledge of a database’s structures and properties one typically has. This technique can execute some queries exactly in a constant, bounded amount of time. When this technique cannot be used to exactly execute a query we show how it can still be used to drastically lower the run-time on the query while getting a good approximation of the exact result. We also discuss the complexity of deciding whether a query is evaluable in this way, both theoretically and practically. The second approach approximates aggregate queries by incorporating only part of the data, rather than all of the data the query pertains to. We briefly investigate an established method of sampling a random subset of the data, and then a newer method which partially reads every tuple and puts deterministic error bounds on the results.\",\"PeriodicalId\":113813,\"journal\":{\"name\":\"Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61366/2576-2176.1065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61366/2576-2176.1065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了两种改进大型关系数据库查询时间的方法。第一种技术利用数据库结构和属性的知识。这种技术可以在固定的有限时间内精确地执行一些查询。当这种技术不能用于精确执行查询时,我们将展示如何使用它来大幅降低查询的运行时间,同时获得很好的近似确切结果。我们还讨论了以这种方式确定查询是否可求值的复杂性,包括理论和实践。第二种方法通过仅合并部分数据而不是查询所涉及的所有数据来近似聚合查询。我们简要地研究了一种已建立的随机抽样数据子集的方法,然后是一种新的方法,它部分读取每个元组并对结果设置确定性的误差界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Querying Large Databases
This paper investigates two approaches to improving query times on large relational databases. The first technique capitalizes on the knowledge of a database’s structures and properties one typically has. This technique can execute some queries exactly in a constant, bounded amount of time. When this technique cannot be used to exactly execute a query we show how it can still be used to drastically lower the run-time on the query while getting a good approximation of the exact result. We also discuss the complexity of deciding whether a query is evaluable in this way, both theoretically and practically. The second approach approximates aggregate queries by incorporating only part of the data, rather than all of the data the query pertains to. We briefly investigate an established method of sampling a random subset of the data, and then a newer method which partially reads every tuple and puts deterministic error bounds on the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Organizational Communication in the WNBA What Influences Reproductive Rights Policy? State Abortion Restrictions and the Level of State Democracy Point Deductions in World Football: The Issue of Financial Fair Play Music Genre Classification Capabilities of Enhanced Neural Network Architectures MLCP of Red Bull
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1