酸性大麻素羟酸酯异构体的合成及生物学评价

H. I. M. Amin, F. Ruíz-Pino, J. Collado, G. Appendino, M. Tena-Sempere, E. Muñoz, Diego Caprioglio
{"title":"酸性大麻素羟酸酯异构体的合成及生物学评价","authors":"H. I. M. Amin, F. Ruíz-Pino, J. Collado, G. Appendino, M. Tena-Sempere, E. Muñoz, Diego Caprioglio","doi":"10.3389/fntpr.2023.1190053","DOIUrl":null,"url":null,"abstract":"Despite their early discovery, the bioactivity of acidic cannabinoids was long overlooked. Issues of stability and a pharmacological focus on Δ9-THC and its biological profile combined to relegate the non-narcotic native form of phytocannabinoids to a sort of investigational limbo. Recent studies have disclosed an attractive bioactivity profile for specific acidic phytocannabinoids but concerns about their limited stability have remained substantially unaddressed. To solve this issue, we have developed the hydroxamate derivatives of Δ8-tetrahydrocannabinolic acid-A (Δ8-THCA-AH, 6) and cannabidiolic acid (CBDAH, 5) as novel acidic cannabinoid bioisosteres, and we report here their synthesis and bioactivity profile against specific cannabinoid targets, as well as promising in vivo activity in a murine model of polycystic ovary syndrome (PCOS) associated with obesity.","PeriodicalId":159634,"journal":{"name":"Frontiers in Natural Products","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and biological evaluation of hydroxamate isosteres of acidic cannabinoids\",\"authors\":\"H. I. M. Amin, F. Ruíz-Pino, J. Collado, G. Appendino, M. Tena-Sempere, E. Muñoz, Diego Caprioglio\",\"doi\":\"10.3389/fntpr.2023.1190053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite their early discovery, the bioactivity of acidic cannabinoids was long overlooked. Issues of stability and a pharmacological focus on Δ9-THC and its biological profile combined to relegate the non-narcotic native form of phytocannabinoids to a sort of investigational limbo. Recent studies have disclosed an attractive bioactivity profile for specific acidic phytocannabinoids but concerns about their limited stability have remained substantially unaddressed. To solve this issue, we have developed the hydroxamate derivatives of Δ8-tetrahydrocannabinolic acid-A (Δ8-THCA-AH, 6) and cannabidiolic acid (CBDAH, 5) as novel acidic cannabinoid bioisosteres, and we report here their synthesis and bioactivity profile against specific cannabinoid targets, as well as promising in vivo activity in a murine model of polycystic ovary syndrome (PCOS) associated with obesity.\",\"PeriodicalId\":159634,\"journal\":{\"name\":\"Frontiers in Natural Products\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Natural Products\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fntpr.2023.1190053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Natural Products","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fntpr.2023.1190053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管它们很早就被发现,但酸性大麻素的生物活性长期被忽视。稳定性问题和对Δ9-THC及其生物学特征的药理学关注结合起来,将植物大麻素的非麻醉天然形式降至一种研究的不确定状态。最近的研究揭示了特定酸性植物大麻素具有吸引人的生物活性概况,但对其有限稳定性的担忧仍然基本上没有得到解决。为了解决这一问题,我们开发了Δ8-tetrahydrocannabinolic acid- a (Δ8-THCA-AH, 6)和大麻二酚酸(CBDAH, 5)的羟酸衍生物作为新型酸性大麻素生物异构体,我们在这里报道了它们的合成和针对特定大麻素靶点的生物活性特征,以及在肥胖相关的多囊卵巢综合征(PCOS)小鼠模型中的有希望的体内活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and biological evaluation of hydroxamate isosteres of acidic cannabinoids
Despite their early discovery, the bioactivity of acidic cannabinoids was long overlooked. Issues of stability and a pharmacological focus on Δ9-THC and its biological profile combined to relegate the non-narcotic native form of phytocannabinoids to a sort of investigational limbo. Recent studies have disclosed an attractive bioactivity profile for specific acidic phytocannabinoids but concerns about their limited stability have remained substantially unaddressed. To solve this issue, we have developed the hydroxamate derivatives of Δ8-tetrahydrocannabinolic acid-A (Δ8-THCA-AH, 6) and cannabidiolic acid (CBDAH, 5) as novel acidic cannabinoid bioisosteres, and we report here their synthesis and bioactivity profile against specific cannabinoid targets, as well as promising in vivo activity in a murine model of polycystic ovary syndrome (PCOS) associated with obesity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cell-free protein synthesis for nonribosomal peptide synthetic biology Cell-free protein synthesis for nonribosomal peptide synthetic biology Natural product based anticancer drug combination discovery assisted by deep learning and network analysis Editorial: From chemistry to therapeutics: exploring the universe of cannabinoids and related meroterpenoids Isolation of new neolignans and an unusual meroterpenoid from Piper cabagranum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1