基于信息理论的相空间重构高维时延选择

Chuntao Zhang, Jialiang Xu, Xiaofeng Chen, Jiao Guo
{"title":"基于信息理论的相空间重构高维时延选择","authors":"Chuntao Zhang, Jialiang Xu, Xiaofeng Chen, Jiao Guo","doi":"10.1109/URKE.2012.6319545","DOIUrl":null,"url":null,"abstract":"A method of information entropy optimized time delays is proposed for the chaotic time series reconstruction. First, it establishes an information entropy optimum model in phase space for high-dimensional time delays by using conditional entropy. Then solved these parameters using genetic algorithm(GA). This method constructs an optimum phase space, which maintains independence of reconstruction coordinate and retains the dynamic characteristics of the original system. In the numerical simulations, results of the Lorenz system show that it could improve the performance of chaotic time series prediction.","PeriodicalId":277189,"journal":{"name":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-dimensional time delays selection for phase space reconstruction with information theory\",\"authors\":\"Chuntao Zhang, Jialiang Xu, Xiaofeng Chen, Jiao Guo\",\"doi\":\"10.1109/URKE.2012.6319545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method of information entropy optimized time delays is proposed for the chaotic time series reconstruction. First, it establishes an information entropy optimum model in phase space for high-dimensional time delays by using conditional entropy. Then solved these parameters using genetic algorithm(GA). This method constructs an optimum phase space, which maintains independence of reconstruction coordinate and retains the dynamic characteristics of the original system. In the numerical simulations, results of the Lorenz system show that it could improve the performance of chaotic time series prediction.\",\"PeriodicalId\":277189,\"journal\":{\"name\":\"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URKE.2012.6319545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URKE.2012.6319545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于信息熵优化时滞的混沌时间序列重构方法。首先,利用条件熵建立了高维时延的相空间信息熵优化模型;然后利用遗传算法求解这些参数。该方法构造了最优相空间,既保持了重构坐标的独立性,又保留了原系统的动态特性。数值模拟结果表明,Lorenz系统可以提高混沌时间序列的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-dimensional time delays selection for phase space reconstruction with information theory
A method of information entropy optimized time delays is proposed for the chaotic time series reconstruction. First, it establishes an information entropy optimum model in phase space for high-dimensional time delays by using conditional entropy. Then solved these parameters using genetic algorithm(GA). This method constructs an optimum phase space, which maintains independence of reconstruction coordinate and retains the dynamic characteristics of the original system. In the numerical simulations, results of the Lorenz system show that it could improve the performance of chaotic time series prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Driving system stability analysis and improving of IPMSM Bayesian network structure learning for discrete and continuous variables Development of genetic algorithm on multi-vendor integrated procurement-production system under shared transportation and just-in-time delivery system Inter-transaction association rule mining in the Indonesia stock exchange market Extreme graphs with given order and edge-neighbor-scattering number
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1