在信息检索中,结合查询差异实现学习检索功能

H. Zha, Zhaohui Zheng, Haoying Fu, Gordon Sun
{"title":"在信息检索中,结合查询差异实现学习检索功能","authors":"H. Zha, Zhaohui Zheng, Haoying Fu, Gordon Sun","doi":"10.1145/1148170.1148335","DOIUrl":null,"url":null,"abstract":"We discuss information retrieval methods that aim at serving a diverse stream of user queries. We propose methods that emphasize the importance of taking into consideration of query difference in learning effective retrieval functions. We formulate the problem as a multi-task learning problem using a risk minimization framework. In particular, we show how to calibrate the empirical risk to incorporate query difference in terms of introducing nuisance parameters in the statistical models, and we also propose an alternating optimization method to simultaneously learn the retrieval function and the nuisance parameters. We illustrate the effectiveness of the proposed methods using modeling data extracted from a commercial search engine.","PeriodicalId":433366,"journal":{"name":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Incorporating query difference for learning retrieval functions in information retrieval\",\"authors\":\"H. Zha, Zhaohui Zheng, Haoying Fu, Gordon Sun\",\"doi\":\"10.1145/1148170.1148335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss information retrieval methods that aim at serving a diverse stream of user queries. We propose methods that emphasize the importance of taking into consideration of query difference in learning effective retrieval functions. We formulate the problem as a multi-task learning problem using a risk minimization framework. In particular, we show how to calibrate the empirical risk to incorporate query difference in terms of introducing nuisance parameters in the statistical models, and we also propose an alternating optimization method to simultaneously learn the retrieval function and the nuisance parameters. We illustrate the effectiveness of the proposed methods using modeling data extracted from a commercial search engine.\",\"PeriodicalId\":433366,\"journal\":{\"name\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1148170.1148335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1148170.1148335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们讨论了旨在服务于不同用户查询流的信息检索方法。我们提出的方法强调了在学习有效的检索函数时考虑查询差异的重要性。我们使用风险最小化框架将问题表述为一个多任务学习问题。特别是,我们展示了如何在统计模型中引入妨害参数来校准经验风险以纳入查询差异,并且我们还提出了一种交替优化方法来同时学习检索函数和妨害参数。我们使用从商业搜索引擎中提取的建模数据来说明所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Incorporating query difference for learning retrieval functions in information retrieval
We discuss information retrieval methods that aim at serving a diverse stream of user queries. We propose methods that emphasize the importance of taking into consideration of query difference in learning effective retrieval functions. We formulate the problem as a multi-task learning problem using a risk minimization framework. In particular, we show how to calibrate the empirical risk to incorporate query difference in terms of introducing nuisance parameters in the statistical models, and we also propose an alternating optimization method to simultaneously learn the retrieval function and the nuisance parameters. We illustrate the effectiveness of the proposed methods using modeling data extracted from a commercial search engine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strict and vague interpretation of XML-retrieval queries AggregateRank: bringing order to web sites Text clustering with extended user feedback Improving personalized web search using result diversification High accuracy retrieval with multiple nested ranker
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1