一个更可解释的多发性硬化分类器

Valentine Wargnier-Dauchelle, T. Grenier, F. Durand-Dubief, F. Cotton, M. Sdika
{"title":"一个更可解释的多发性硬化分类器","authors":"Valentine Wargnier-Dauchelle, T. Grenier, F. Durand-Dubief, F. Cotton, M. Sdika","doi":"10.1109/ISBI48211.2021.9434074","DOIUrl":null,"url":null,"abstract":"Over the past years, deep learning proved its effectiveness in medical imaging for diagnosis or segmentation. Nevertheless, to be fully integrated in clinics, these methods must both reach good performances and convince area practitioners about their interpretability. Thus, an interpretable model should make its decision on clinical relevant information as a domain expert would. With this purpose, we propose a more interpretable classifier focusing on the most widespread autoimmune neuroinflammatory disease: multiple sclerosis. This disease is characterized by brain lesions visible on MRI (Magnetic Resonance Images) on which diagnosis is based. Using Integrated Gradients attributions, we show that the utilization of brain tissue probability maps instead of raw MR images as deep network input reaches a more accurate and interpretable classifier with decision highly based on lesions.","PeriodicalId":372939,"journal":{"name":"2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)","volume":"726 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A More Interpretable Classifier For Multiple Sclerosis\",\"authors\":\"Valentine Wargnier-Dauchelle, T. Grenier, F. Durand-Dubief, F. Cotton, M. Sdika\",\"doi\":\"10.1109/ISBI48211.2021.9434074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past years, deep learning proved its effectiveness in medical imaging for diagnosis or segmentation. Nevertheless, to be fully integrated in clinics, these methods must both reach good performances and convince area practitioners about their interpretability. Thus, an interpretable model should make its decision on clinical relevant information as a domain expert would. With this purpose, we propose a more interpretable classifier focusing on the most widespread autoimmune neuroinflammatory disease: multiple sclerosis. This disease is characterized by brain lesions visible on MRI (Magnetic Resonance Images) on which diagnosis is based. Using Integrated Gradients attributions, we show that the utilization of brain tissue probability maps instead of raw MR images as deep network input reaches a more accurate and interpretable classifier with decision highly based on lesions.\",\"PeriodicalId\":372939,\"journal\":{\"name\":\"2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"726 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI48211.2021.9434074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI48211.2021.9434074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在过去的几年里,深度学习证明了它在医学成像诊断或分割方面的有效性。然而,要在诊所中充分整合,这些方法必须既达到良好的性能,又使地区从业者相信它们的可解释性。因此,可解释模型应该像领域专家那样根据临床相关信息做出决策。基于这个目的,我们提出了一个更可解释的分类器,专注于最广泛的自身免疫性神经炎症疾病:多发性硬化症。这种疾病的特点是在MRI(磁共振图像)上可见脑损伤,这是诊断的基础。使用集成梯度归因,我们表明使用脑组织概率图代替原始MR图像作为深度网络输入达到了一个更准确和可解释的分类器,其决策高度基于病变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A More Interpretable Classifier For Multiple Sclerosis
Over the past years, deep learning proved its effectiveness in medical imaging for diagnosis or segmentation. Nevertheless, to be fully integrated in clinics, these methods must both reach good performances and convince area practitioners about their interpretability. Thus, an interpretable model should make its decision on clinical relevant information as a domain expert would. With this purpose, we propose a more interpretable classifier focusing on the most widespread autoimmune neuroinflammatory disease: multiple sclerosis. This disease is characterized by brain lesions visible on MRI (Magnetic Resonance Images) on which diagnosis is based. Using Integrated Gradients attributions, we show that the utilization of brain tissue probability maps instead of raw MR images as deep network input reaches a more accurate and interpretable classifier with decision highly based on lesions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced-Quality Gan (EQ-GAN) on Lung CT Scans: Toward Truth and Potential Hallucinations Ghost-Light-3dnet: Efficient Network For Heart Segmentation Landmark Constellation Models For Central Venous Catheter Malposition Detection Biventricular Surface Reconstruction From Cine Mri Contours Using Point Completion Networks Multi-channel Sparse Graph Transformer Network for Early Alzheimer’s Disease Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1