G. Eisenberg-Klein, E. Verschuur, S. Qu, E. Schünemann
{"title":"JMI-FWI:使用联合迁移反演(JMI)和全波形反演(FWI)的级联工作流","authors":"G. Eisenberg-Klein, E. Verschuur, S. Qu, E. Schünemann","doi":"10.3997/2214-4609.201900035","DOIUrl":null,"url":null,"abstract":"Summary Data driven Velocity Model Building (VMB) based on Full Waveform Inversion requires very broad band, especially low frequnecy data content to overcome the cycle skipping problem. In this paper we demonstrate how the Joint Migration Inversion method introduced by the DELHPI consortium group applied in a cascaded workflow to preduce a hich quality velocity model to start and reduce efforts in Full Waveform Inversion.","PeriodicalId":350524,"journal":{"name":"Second EAGE/PESGB Workshop on Velocities","volume":"295 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"JMI-FWI: Cascading Workflow Using Joint Migration Inversion (JMI) and Full Waveform Inversion (FWI)\",\"authors\":\"G. Eisenberg-Klein, E. Verschuur, S. Qu, E. Schünemann\",\"doi\":\"10.3997/2214-4609.201900035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Data driven Velocity Model Building (VMB) based on Full Waveform Inversion requires very broad band, especially low frequnecy data content to overcome the cycle skipping problem. In this paper we demonstrate how the Joint Migration Inversion method introduced by the DELHPI consortium group applied in a cascaded workflow to preduce a hich quality velocity model to start and reduce efforts in Full Waveform Inversion.\",\"PeriodicalId\":350524,\"journal\":{\"name\":\"Second EAGE/PESGB Workshop on Velocities\",\"volume\":\"295 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Second EAGE/PESGB Workshop on Velocities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201900035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Second EAGE/PESGB Workshop on Velocities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201900035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
JMI-FWI: Cascading Workflow Using Joint Migration Inversion (JMI) and Full Waveform Inversion (FWI)
Summary Data driven Velocity Model Building (VMB) based on Full Waveform Inversion requires very broad band, especially low frequnecy data content to overcome the cycle skipping problem. In this paper we demonstrate how the Joint Migration Inversion method introduced by the DELHPI consortium group applied in a cascaded workflow to preduce a hich quality velocity model to start and reduce efforts in Full Waveform Inversion.