{"title":"利用多矢量量化和半连续隐马尔可夫模型进行语音识别","authors":"A. Peinado, J. C. Segura, A. Rubio, M. C. Benítez","doi":"10.1109/ICASSP.1994.389355","DOIUrl":null,"url":null,"abstract":"Although the continuous HMM (CHMM) technique seems to be the most flexible and complete tool for speech modeling, it is not always used for the implementation of speech recognition systems due to several problems related to training and computational complexity. Besides, it is not clear the superiority of continuous models over other well-known types of HMMs, such as discrete (DHMM) or semicontinuous (SCHMM) models, or multiple vector quantization (MVQ) models, a new type of HMM modeling. The authors propose a new variant of HMM models, the SCMVQ, HMM models (semicontinuous multiple vector quantization HMM), that uses one VQ codebook per recognition unit and several quantization candidates, Formally, SCMVQ modeling is the closest one to CHMM, although requiring less computation than SCHMMs. Besides, the authors show that SCMVQs can obtain better recognition results than DHMMs, SCHMMs or MVQs.<<ETX>>","PeriodicalId":290798,"journal":{"name":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Using multiple vector quantization and semicontinuous hidden Markov models for speech recognition\",\"authors\":\"A. Peinado, J. C. Segura, A. Rubio, M. C. Benítez\",\"doi\":\"10.1109/ICASSP.1994.389355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the continuous HMM (CHMM) technique seems to be the most flexible and complete tool for speech modeling, it is not always used for the implementation of speech recognition systems due to several problems related to training and computational complexity. Besides, it is not clear the superiority of continuous models over other well-known types of HMMs, such as discrete (DHMM) or semicontinuous (SCHMM) models, or multiple vector quantization (MVQ) models, a new type of HMM modeling. The authors propose a new variant of HMM models, the SCMVQ, HMM models (semicontinuous multiple vector quantization HMM), that uses one VQ codebook per recognition unit and several quantization candidates, Formally, SCMVQ modeling is the closest one to CHMM, although requiring less computation than SCHMMs. Besides, the authors show that SCMVQs can obtain better recognition results than DHMMs, SCHMMs or MVQs.<<ETX>>\",\"PeriodicalId\":290798,\"journal\":{\"name\":\"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1994.389355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1994.389355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using multiple vector quantization and semicontinuous hidden Markov models for speech recognition
Although the continuous HMM (CHMM) technique seems to be the most flexible and complete tool for speech modeling, it is not always used for the implementation of speech recognition systems due to several problems related to training and computational complexity. Besides, it is not clear the superiority of continuous models over other well-known types of HMMs, such as discrete (DHMM) or semicontinuous (SCHMM) models, or multiple vector quantization (MVQ) models, a new type of HMM modeling. The authors propose a new variant of HMM models, the SCMVQ, HMM models (semicontinuous multiple vector quantization HMM), that uses one VQ codebook per recognition unit and several quantization candidates, Formally, SCMVQ modeling is the closest one to CHMM, although requiring less computation than SCHMMs. Besides, the authors show that SCMVQs can obtain better recognition results than DHMMs, SCHMMs or MVQs.<>