基于拍卖定价的协同边缘计算任务卸载策略

Ruyang Wang, Chunyan Zang, Peng He, Yaping Cui, D. Wu
{"title":"基于拍卖定价的协同边缘计算任务卸载策略","authors":"Ruyang Wang, Chunyan Zang, Peng He, Yaping Cui, D. Wu","doi":"10.1109/GLOBECOM46510.2021.9685259","DOIUrl":null,"url":null,"abstract":"Mobile edge computing (MEC) enables resource-constrained mobile devices (MDs) to offload their tasks onto nearby edge servers. However, there exists a profit allocation problem between users and edge nodes (ENs) due to the limi-tations of ENs computing capacity and spectrum resources. In this paper, we propose an auction pricing-based MEC offloading strategy to maximize the profit of ENs. Firstly, we design an overall auction process using the binary offloading model by considering MDs battery capacity, basic profit, and tasks tolerable delay. Secondly, the bidding willingness of MDs in each round of auction are given on the premise of effectively ensuring users rationality. Finally, an auction pricing-based task offloading strat-egy is proposed, in which the winner of a single-round auction can offload its computation task to the ES. Simulation results verify the performance of the proposed strategy. Compared with the VA algorithm, the profit obtained by ENs has increased by 23.8%.","PeriodicalId":200641,"journal":{"name":"2021 IEEE Global Communications Conference (GLOBECOM)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auction Pricing-Based Task Offloading Strategy for Cooperative Edge Computing\",\"authors\":\"Ruyang Wang, Chunyan Zang, Peng He, Yaping Cui, D. Wu\",\"doi\":\"10.1109/GLOBECOM46510.2021.9685259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile edge computing (MEC) enables resource-constrained mobile devices (MDs) to offload their tasks onto nearby edge servers. However, there exists a profit allocation problem between users and edge nodes (ENs) due to the limi-tations of ENs computing capacity and spectrum resources. In this paper, we propose an auction pricing-based MEC offloading strategy to maximize the profit of ENs. Firstly, we design an overall auction process using the binary offloading model by considering MDs battery capacity, basic profit, and tasks tolerable delay. Secondly, the bidding willingness of MDs in each round of auction are given on the premise of effectively ensuring users rationality. Finally, an auction pricing-based task offloading strat-egy is proposed, in which the winner of a single-round auction can offload its computation task to the ES. Simulation results verify the performance of the proposed strategy. Compared with the VA algorithm, the profit obtained by ENs has increased by 23.8%.\",\"PeriodicalId\":200641,\"journal\":{\"name\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM46510.2021.9685259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM46510.2021.9685259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

移动边缘计算(MEC)使资源受限的移动设备(MDs)能够将其任务卸载到附近的边缘服务器上。但是,由于边缘节点计算能力和频谱资源的限制,用户和边缘节点之间存在利益分配问题。本文提出了一种基于拍卖定价的MEC卸载策略,以实现ens的利润最大化。首先,考虑MDs电池容量、基本利润和任务可容忍延迟,采用二元卸载模型设计了整体拍卖流程;其次,在有效保证用户合理性的前提下,给出每轮拍卖中MDs的竞价意愿。最后,提出了一种基于拍卖定价的任务卸载策略,其中单轮拍卖的获胜者可以将其计算任务卸载给ES。仿真结果验证了该策略的有效性。与VA算法相比,ENs获得的利润增加了23.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Auction Pricing-Based Task Offloading Strategy for Cooperative Edge Computing
Mobile edge computing (MEC) enables resource-constrained mobile devices (MDs) to offload their tasks onto nearby edge servers. However, there exists a profit allocation problem between users and edge nodes (ENs) due to the limi-tations of ENs computing capacity and spectrum resources. In this paper, we propose an auction pricing-based MEC offloading strategy to maximize the profit of ENs. Firstly, we design an overall auction process using the binary offloading model by considering MDs battery capacity, basic profit, and tasks tolerable delay. Secondly, the bidding willingness of MDs in each round of auction are given on the premise of effectively ensuring users rationality. Finally, an auction pricing-based task offloading strat-egy is proposed, in which the winner of a single-round auction can offload its computation task to the ES. Simulation results verify the performance of the proposed strategy. Compared with the VA algorithm, the profit obtained by ENs has increased by 23.8%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Blockchain-based Energy Trading Scheme for Dynamic Charging of Electric Vehicles Algebraic Design of a Class of Rate 1/3 Quasi-Cyclic LDPC Codes A Fast and Scalable Resource Allocation Scheme for End-to-End Network Slices Modelling of Multi-Tier Handover in LiFi Networks Enabling Efficient Scheduling Policy in Intelligent Reflecting Surface Aided Federated Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1