相位声码器:关于相位业务

Jean Laroche, M. Dolson
{"title":"相位声码器:关于相位业务","authors":"Jean Laroche, M. Dolson","doi":"10.1109/ASPAA.1997.625603","DOIUrl":null,"url":null,"abstract":"The phase-vocoder is a well-known tool for the frequency domain processing of speech or audio signals, with applications such as time compression or expansion, pitch-scale modification, noise reduction, etc. In the context of time-scale or pitch-scale modification, the phase-vocoder is usually considered to yield high quality results, especially when large modification factors are used on polyphonic or non-pitched signals. However, the phase-vocoder is also known for an artifact that plagues its output, and has been described in the literature as either \"phasiness\", \"reverberation\", or \"loss of presence\". Research has been devoted to understanding and reducing this artifact, and solutions have been proposed which either significantly improve the quality of the output at the cost of a very high additional computation time, or are inexpensive but only marginally effective. This paper examines the problem of phasiness in the context of time-scale modification of signals, and presents two new phase synchronization schemes which are shown to both significantly improve the sound quality, and reduce the computational cost of such modifications.","PeriodicalId":347087,"journal":{"name":"Proceedings of 1997 Workshop on Applications of Signal Processing to Audio and Acoustics","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Phase-vocoder: about this phasiness business\",\"authors\":\"Jean Laroche, M. Dolson\",\"doi\":\"10.1109/ASPAA.1997.625603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The phase-vocoder is a well-known tool for the frequency domain processing of speech or audio signals, with applications such as time compression or expansion, pitch-scale modification, noise reduction, etc. In the context of time-scale or pitch-scale modification, the phase-vocoder is usually considered to yield high quality results, especially when large modification factors are used on polyphonic or non-pitched signals. However, the phase-vocoder is also known for an artifact that plagues its output, and has been described in the literature as either \\\"phasiness\\\", \\\"reverberation\\\", or \\\"loss of presence\\\". Research has been devoted to understanding and reducing this artifact, and solutions have been proposed which either significantly improve the quality of the output at the cost of a very high additional computation time, or are inexpensive but only marginally effective. This paper examines the problem of phasiness in the context of time-scale modification of signals, and presents two new phase synchronization schemes which are shown to both significantly improve the sound quality, and reduce the computational cost of such modifications.\",\"PeriodicalId\":347087,\"journal\":{\"name\":\"Proceedings of 1997 Workshop on Applications of Signal Processing to Audio and Acoustics\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1997 Workshop on Applications of Signal Processing to Audio and Acoustics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPAA.1997.625603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1997 Workshop on Applications of Signal Processing to Audio and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPAA.1997.625603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

相位声码器是一种众所周知的用于语音或音频信号频域处理的工具,应用于时间压缩或扩展,音高尺度修改,降噪等。在时间尺度或音高尺度修改的情况下,相位声码器通常被认为可以产生高质量的结果,特别是当在复音或非音高信号上使用大的修改因子时。然而,相位声码器也因其输出受到干扰而闻名,并且在文献中被描述为“相位”,“混响”或“存在损失”。研究一直致力于理解和减少这个工件,并且已经提出了解决方案,这些解决方案要么以非常高的额外计算时间为代价显着提高输出质量,要么价格低廉但仅略微有效。本文研究了信号时间尺度修改中的相位问题,并提出了两种新的相位同步方案,这两种方案既能显著提高声音质量,又能减少这种修改的计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phase-vocoder: about this phasiness business
The phase-vocoder is a well-known tool for the frequency domain processing of speech or audio signals, with applications such as time compression or expansion, pitch-scale modification, noise reduction, etc. In the context of time-scale or pitch-scale modification, the phase-vocoder is usually considered to yield high quality results, especially when large modification factors are used on polyphonic or non-pitched signals. However, the phase-vocoder is also known for an artifact that plagues its output, and has been described in the literature as either "phasiness", "reverberation", or "loss of presence". Research has been devoted to understanding and reducing this artifact, and solutions have been proposed which either significantly improve the quality of the output at the cost of a very high additional computation time, or are inexpensive but only marginally effective. This paper examines the problem of phasiness in the context of time-scale modification of signals, and presents two new phase synchronization schemes which are shown to both significantly improve the sound quality, and reduce the computational cost of such modifications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mixed nearfield/farfield beamforming: a new technique for speech acquisition in a reverberant environment Analysis of nonlinear and nonstationary processes in speech production Elimination of delay-free loops in discrete-time models of nonlinear acoustic systems Computational auditory scene analysis exploiting speech-recognition knowledge Towards a model of loudness recalibration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1