基于ANFIS的气动人工肌肉逆建模

C. V. Baysal
{"title":"基于ANFIS的气动人工肌肉逆建模","authors":"C. V. Baysal","doi":"10.18100/IJAMEC.797271","DOIUrl":null,"url":null,"abstract":"Pneumatic Artificial Muscles (PAM) are soft actuators with advantages of high force to weight ratio, flexible structure and low cost. On the other hand, their inherent nonlinear characteristics yield difficulties in modeling and control actions, which is an important factor restricting use of PAM. In literature, there are various modeling approaches such as virtual work , empirical and phenomenological models. However, they appear as either much complicated or are approximate ones as a variable stiffness spring for model with nonlinear input-output relationship. In this work, the behaviour of PAM is interpreted as an integrated response to pressure input that results in a simultaneous force and muscle length change. The integrated response behaviour of PAM is not combined effectively in terms of simultaneous resultant force and muscle contraction in many existing models. In order to implement that response, standard identification methods , for instance NNARX, are not suitable for modeling this behaviour. Moreover, an inverse modeling with grey box approach is proposed in order to utilize the model in control applications. Since Neuro-Fuzzy inference systems are universal estimators, the modeling is implemented by an ANFIS structure using the experimental data collected from PAM test bed. According to implementation results, the ANFIS based inverse model has yielded satisfactory performance deducing that it could be a simple and effective solution for PAM modeling and control issue.","PeriodicalId":120305,"journal":{"name":"International Journal of Applied Mathematics Electronics and Computers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ANFIS based inverse modeling for pneumatic artificial muscles\",\"authors\":\"C. V. Baysal\",\"doi\":\"10.18100/IJAMEC.797271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pneumatic Artificial Muscles (PAM) are soft actuators with advantages of high force to weight ratio, flexible structure and low cost. On the other hand, their inherent nonlinear characteristics yield difficulties in modeling and control actions, which is an important factor restricting use of PAM. In literature, there are various modeling approaches such as virtual work , empirical and phenomenological models. However, they appear as either much complicated or are approximate ones as a variable stiffness spring for model with nonlinear input-output relationship. In this work, the behaviour of PAM is interpreted as an integrated response to pressure input that results in a simultaneous force and muscle length change. The integrated response behaviour of PAM is not combined effectively in terms of simultaneous resultant force and muscle contraction in many existing models. In order to implement that response, standard identification methods , for instance NNARX, are not suitable for modeling this behaviour. Moreover, an inverse modeling with grey box approach is proposed in order to utilize the model in control applications. Since Neuro-Fuzzy inference systems are universal estimators, the modeling is implemented by an ANFIS structure using the experimental data collected from PAM test bed. According to implementation results, the ANFIS based inverse model has yielded satisfactory performance deducing that it could be a simple and effective solution for PAM modeling and control issue.\",\"PeriodicalId\":120305,\"journal\":{\"name\":\"International Journal of Applied Mathematics Electronics and Computers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics Electronics and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18100/IJAMEC.797271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics Electronics and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18100/IJAMEC.797271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

气动人工肌肉(PAM)是一种具有力重比高、结构灵活、成本低等优点的柔性执行器。另一方面,它们固有的非线性特性给建模和控制行为带来了困难,这是制约PAM应用的重要因素。在文献中,有各种建模方法,如虚拟功,经验和现象学模型。但对于具有非线性输入输出关系的模型,它们要么过于复杂,要么近似为变刚度弹簧。在这项工作中,PAM的行为被解释为对压力输入的综合响应,导致同时的力和肌肉长度变化。在现有的许多模型中,PAM的综合响应行为在同时合力和肌肉收缩方面没有得到有效的结合。为了实现这种响应,标准的识别方法,例如NNARX,不适合对这种行为进行建模。在此基础上,提出了一种基于灰盒法的逆建模方法,以便将该模型应用于控制中。由于神经模糊推理系统是通用估计器,因此利用PAM试验台收集的实验数据,通过ANFIS结构实现建模。实现结果表明,基于ANFIS的反模型取得了满意的效果,是解决PAM建模与控制问题的一种简单有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An ANFIS based inverse modeling for pneumatic artificial muscles
Pneumatic Artificial Muscles (PAM) are soft actuators with advantages of high force to weight ratio, flexible structure and low cost. On the other hand, their inherent nonlinear characteristics yield difficulties in modeling and control actions, which is an important factor restricting use of PAM. In literature, there are various modeling approaches such as virtual work , empirical and phenomenological models. However, they appear as either much complicated or are approximate ones as a variable stiffness spring for model with nonlinear input-output relationship. In this work, the behaviour of PAM is interpreted as an integrated response to pressure input that results in a simultaneous force and muscle length change. The integrated response behaviour of PAM is not combined effectively in terms of simultaneous resultant force and muscle contraction in many existing models. In order to implement that response, standard identification methods , for instance NNARX, are not suitable for modeling this behaviour. Moreover, an inverse modeling with grey box approach is proposed in order to utilize the model in control applications. Since Neuro-Fuzzy inference systems are universal estimators, the modeling is implemented by an ANFIS structure using the experimental data collected from PAM test bed. According to implementation results, the ANFIS based inverse model has yielded satisfactory performance deducing that it could be a simple and effective solution for PAM modeling and control issue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative analysis of ANFIS models in Prediction of Streamflow: the case of Seyhan Basin Prediction of electromagnetic power density emitted from GSM base stations by using multiple linear regression Epileptic seizure detection combining power spectral density and high-frequency oscillations Adaptive Neural-Fuzzy controller design combined with LQR to control the position of gantry crane Evaluation of the performance of an unmanned aerial vehicle with artificial intelligence support and Mavlink protocol designed for response to social incidents response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1