基于告警和KPI相关性的电池停机检测与退化分类

L. A. El-aziz, Esraa Amr, Hassnaa Yehia, Heba Mostfa, Menna Hisham, Ahmed Shenawy, Ahmed K. F. Khattab, A. Taha, Hany El-Akel
{"title":"基于告警和KPI相关性的电池停机检测与退化分类","authors":"L. A. El-aziz, Esraa Amr, Hassnaa Yehia, Heba Mostfa, Menna Hisham, Ahmed Shenawy, Ahmed K. F. Khattab, A. Taha, Hany El-Akel","doi":"10.1109/NILES50944.2020.9257920","DOIUrl":null,"url":null,"abstract":"In this paper, we present cell outage detection and cell degradation classification algorithms for Self-Organizing Networks (SONs). The cell outage detection algorithm uses both the cell’s reported alarms and Key Performance Indicators (KPIs) to determine whether or not the cell is experience outage. For those cells that are not in outage, the cell degradation classification algorithm identifies the level of performance as either critical degradation, medium degradation or normal cell operation. The key idea of the proposed classification approach is to use the least number of KPIs by studying the correlation between the different KPIs. We consider three different machine learning algorithms for classification. Our results show that the Random Forest approach results in the highest accuracy of 99% with a runtime reduced by 29% due to the reduction in the number of used KPIs.","PeriodicalId":253090,"journal":{"name":"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell Outage Detection and Degradation Classification Based on Alarms and KPI’s Correlation\",\"authors\":\"L. A. El-aziz, Esraa Amr, Hassnaa Yehia, Heba Mostfa, Menna Hisham, Ahmed Shenawy, Ahmed K. F. Khattab, A. Taha, Hany El-Akel\",\"doi\":\"10.1109/NILES50944.2020.9257920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present cell outage detection and cell degradation classification algorithms for Self-Organizing Networks (SONs). The cell outage detection algorithm uses both the cell’s reported alarms and Key Performance Indicators (KPIs) to determine whether or not the cell is experience outage. For those cells that are not in outage, the cell degradation classification algorithm identifies the level of performance as either critical degradation, medium degradation or normal cell operation. The key idea of the proposed classification approach is to use the least number of KPIs by studying the correlation between the different KPIs. We consider three different machine learning algorithms for classification. Our results show that the Random Forest approach results in the highest accuracy of 99% with a runtime reduced by 29% due to the reduction in the number of used KPIs.\",\"PeriodicalId\":253090,\"journal\":{\"name\":\"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NILES50944.2020.9257920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NILES50944.2020.9257920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了自组织网络(SONs)的细胞中断检测和细胞退化分类算法。计算单元停机检测算法使用计算单元报告的警报和关键性能指标(kpi)来确定计算单元是否经历停机。对于那些未停机的单元,单元降级分类算法将性能级别识别为临界降级、中等降级或正常单元操作。所提出的分类方法的关键思想是通过研究不同kpi之间的相关性来使用最少数量的kpi。我们考虑了三种不同的机器学习分类算法。我们的结果表明,随机森林方法的准确率最高,达到99%,由于使用kpi的数量减少,运行时间减少了29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cell Outage Detection and Degradation Classification Based on Alarms and KPI’s Correlation
In this paper, we present cell outage detection and cell degradation classification algorithms for Self-Organizing Networks (SONs). The cell outage detection algorithm uses both the cell’s reported alarms and Key Performance Indicators (KPIs) to determine whether or not the cell is experience outage. For those cells that are not in outage, the cell degradation classification algorithm identifies the level of performance as either critical degradation, medium degradation or normal cell operation. The key idea of the proposed classification approach is to use the least number of KPIs by studying the correlation between the different KPIs. We consider three different machine learning algorithms for classification. Our results show that the Random Forest approach results in the highest accuracy of 99% with a runtime reduced by 29% due to the reduction in the number of used KPIs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decentralized Intersection Management of Autonomous Vehicles Using Nonlinear MPC Low power and area SHA-256 hardware accelerator on Virtex-7 FPGA Dynamic Programming Applications: A Suvrvey Self-Organizing Maps to Assess Rehabilitation Progress of Post-Stroke Patients SoC loosely Coupled Navigation Algorithm Evaluation via 6-DOF Flight Simulation Model of Guided Bomb
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1