群体活动识别的合作层次框架:从群体检测到多活动识别

Mohammed Al-habib, Dong-jun Huang, Majjed Al-Qatf, Kamal Al-Sabahi
{"title":"群体活动识别的合作层次框架:从群体检测到多活动识别","authors":"Mohammed Al-habib, Dong-jun Huang, Majjed Al-Qatf, Kamal Al-Sabahi","doi":"10.1145/3316615.3316722","DOIUrl":null,"url":null,"abstract":"Deep neural network algorithms have shown promising performance for many tasks in computer vision field. Several neural network-based methods have been proposed to recognize group activities from video sequences. However, there are still several challenges that are related to multiple groups with different activities within a scene. The strong correlation that exists among individual motion, groups and activities can be utilized to detect groups and recognize their concurrent activities. Motivated by these observations, we propose a unified deep learning framework for detecting multiple groups and recognizing their corresponding collective activity based on Long Short-Term Memory (LSTM) network. In this framework, we use a pre-trained convolutional neural network (CNN) to extract features from the frames and appearances of persons. An objective function has been proposed to learn the amount of pairwise interaction between persons. The obtained individual features are passed to a clustering algorithm to detect groups in the scene. Then, an LSTM based model is used to recognize group activities. Together with this, a scene level CNN followed by LSTM is used to extract and learn scene level feature. Finally, the activities from the group level and the scene context level are integrated to infer the collective activity. The proposed method is evaluated on the benchmark collective activity dataset and compared with several baselines. The experimental results show its competitive performance for the collective activity recognition task.","PeriodicalId":268392,"journal":{"name":"Proceedings of the 2019 8th International Conference on Software and Computer Applications","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cooperative Hierarchical Framework for Group Activity Recognition: From Group Detection to Multi-activity Recognition\",\"authors\":\"Mohammed Al-habib, Dong-jun Huang, Majjed Al-Qatf, Kamal Al-Sabahi\",\"doi\":\"10.1145/3316615.3316722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural network algorithms have shown promising performance for many tasks in computer vision field. Several neural network-based methods have been proposed to recognize group activities from video sequences. However, there are still several challenges that are related to multiple groups with different activities within a scene. The strong correlation that exists among individual motion, groups and activities can be utilized to detect groups and recognize their concurrent activities. Motivated by these observations, we propose a unified deep learning framework for detecting multiple groups and recognizing their corresponding collective activity based on Long Short-Term Memory (LSTM) network. In this framework, we use a pre-trained convolutional neural network (CNN) to extract features from the frames and appearances of persons. An objective function has been proposed to learn the amount of pairwise interaction between persons. The obtained individual features are passed to a clustering algorithm to detect groups in the scene. Then, an LSTM based model is used to recognize group activities. Together with this, a scene level CNN followed by LSTM is used to extract and learn scene level feature. Finally, the activities from the group level and the scene context level are integrated to infer the collective activity. The proposed method is evaluated on the benchmark collective activity dataset and compared with several baselines. The experimental results show its competitive performance for the collective activity recognition task.\",\"PeriodicalId\":268392,\"journal\":{\"name\":\"Proceedings of the 2019 8th International Conference on Software and Computer Applications\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 8th International Conference on Software and Computer Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3316615.3316722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 8th International Conference on Software and Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316615.3316722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

深度神经网络算法在计算机视觉领域的许多任务中显示出良好的性能。人们提出了几种基于神经网络的方法来从视频序列中识别群体活动。然而,仍然存在一些与场景中具有不同活动的多个组相关的挑战。个体运动、群体和活动之间存在的强相关性可以用来检测群体并识别它们的并发活动。基于这些观察结果,我们提出了一个统一的深度学习框架,用于检测多个群体并基于长短期记忆(LSTM)网络识别其相应的集体活动。在这个框架中,我们使用预训练的卷积神经网络(CNN)从人物的框架和外表中提取特征。已经提出了一个目标函数来学习人与人之间成对交互的数量。将获得的单个特征传递给聚类算法以检测场景中的组。然后,采用基于LSTM的模型对群体活动进行识别。与此同时,使用场景级CNN和LSTM来提取和学习场景级特征。最后,将群体层面的活动和场景情境层面的活动结合起来,推断出集体活动。在基准集体活动数据集上对该方法进行了评估,并与多个基线进行了比较。实验结果表明,该方法在集体活动识别任务中具有较强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cooperative Hierarchical Framework for Group Activity Recognition: From Group Detection to Multi-activity Recognition
Deep neural network algorithms have shown promising performance for many tasks in computer vision field. Several neural network-based methods have been proposed to recognize group activities from video sequences. However, there are still several challenges that are related to multiple groups with different activities within a scene. The strong correlation that exists among individual motion, groups and activities can be utilized to detect groups and recognize their concurrent activities. Motivated by these observations, we propose a unified deep learning framework for detecting multiple groups and recognizing their corresponding collective activity based on Long Short-Term Memory (LSTM) network. In this framework, we use a pre-trained convolutional neural network (CNN) to extract features from the frames and appearances of persons. An objective function has been proposed to learn the amount of pairwise interaction between persons. The obtained individual features are passed to a clustering algorithm to detect groups in the scene. Then, an LSTM based model is used to recognize group activities. Together with this, a scene level CNN followed by LSTM is used to extract and learn scene level feature. Finally, the activities from the group level and the scene context level are integrated to infer the collective activity. The proposed method is evaluated on the benchmark collective activity dataset and compared with several baselines. The experimental results show its competitive performance for the collective activity recognition task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BookCeption An Enhanced Key Security of Playfair Cipher Algorithm Adoption Issues in DevOps from the Perspective of Continuous Delivery Pipeline A User Attribute Recommendation Algorithm and Peer3D Technology based WebVR P2P Transmission Scheme Survey of Hyperledger Blockchain Frameworks: Case Study in FPT University's Cryptocurrency Wallets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1