利用二阶向量与语义相似度的集成改进人类判断的相关性

Bridget T. McInnes, Ted Pedersen
{"title":"利用二阶向量与语义相似度的集成改进人类判断的相关性","authors":"Bridget T. McInnes, Ted Pedersen","doi":"10.18653/v1/W17-2313","DOIUrl":null,"url":null,"abstract":"Vector space methods that measure semantic similarity and relatedness often rely on distributional information such as co–occurrence frequencies or statistical measures of association to weight the importance of particular co–occurrences. In this paper, we extend these methods by incorporating a measure of semantic similarity based on a human curated taxonomy into a second–order vector representation. This results in a measure of semantic relatedness that combines both the contextual information available in a corpus–based vector space representation with the semantic knowledge found in a biomedical ontology. Our results show that incorporating semantic similarity into a second order co-occurrence matrices improves correlation with human judgments for both similarity and relatedness, and that our method compares favorably to various different word embedding methods that have recently been evaluated on the same reference standards we have used.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"262 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improving Correlation with Human Judgments by Integrating Semantic Similarity with Second–Order Vectors\",\"authors\":\"Bridget T. McInnes, Ted Pedersen\",\"doi\":\"10.18653/v1/W17-2313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vector space methods that measure semantic similarity and relatedness often rely on distributional information such as co–occurrence frequencies or statistical measures of association to weight the importance of particular co–occurrences. In this paper, we extend these methods by incorporating a measure of semantic similarity based on a human curated taxonomy into a second–order vector representation. This results in a measure of semantic relatedness that combines both the contextual information available in a corpus–based vector space representation with the semantic knowledge found in a biomedical ontology. Our results show that incorporating semantic similarity into a second order co-occurrence matrices improves correlation with human judgments for both similarity and relatedness, and that our method compares favorably to various different word embedding methods that have recently been evaluated on the same reference standards we have used.\",\"PeriodicalId\":200974,\"journal\":{\"name\":\"Workshop on Biomedical Natural Language Processing\",\"volume\":\"262 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Biomedical Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W17-2313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-2313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

测量语义相似性和相关性的向量空间方法通常依赖于分布信息,如共现频率或关联的统计度量,以加权特定共现的重要性。在本文中,我们通过将基于人类分类的语义相似性度量纳入二阶向量表示来扩展这些方法。这就产生了一种语义相关性度量,它将基于语料库的向量空间表示中可用的上下文信息与生物医学本体中发现的语义知识结合起来。我们的研究结果表明,将语义相似度结合到二阶共现矩阵中可以提高与人类对相似性和相关性判断的相关性,并且我们的方法比最近在我们使用的相同参考标准上评估的各种不同的词嵌入方法更有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Correlation with Human Judgments by Integrating Semantic Similarity with Second–Order Vectors
Vector space methods that measure semantic similarity and relatedness often rely on distributional information such as co–occurrence frequencies or statistical measures of association to weight the importance of particular co–occurrences. In this paper, we extend these methods by incorporating a measure of semantic similarity based on a human curated taxonomy into a second–order vector representation. This results in a measure of semantic relatedness that combines both the contextual information available in a corpus–based vector space representation with the semantic knowledge found in a biomedical ontology. Our results show that incorporating semantic similarity into a second order co-occurrence matrices improves correlation with human judgments for both similarity and relatedness, and that our method compares favorably to various different word embedding methods that have recently been evaluated on the same reference standards we have used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BIOptimus: Pre-training an Optimal Biomedical Language Model with Curriculum Learning for Named Entity Recognition Multi-Source (Pre-)Training for Cross-Domain Measurement, Unit and Context Extraction Building a Corpus for Biomedical Relation Extraction of Species Mentions Good Data, Large Data, or No Data? Comparing Three Approaches in Developing Research Aspect Classifiers for Biomedical Papers Evaluation of ChatGPT on Biomedical Tasks: A Zero-Shot Comparison with Fine-Tuned Generative Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1