统一流形逼近与两阶段优化

Hyeon Jeon, Hyung-Kwon Ko, S. Lee, Jaemin Jo, Jinwook Seo
{"title":"统一流形逼近与两阶段优化","authors":"Hyeon Jeon, Hyung-Kwon Ko, S. Lee, Jaemin Jo, Jinwook Seo","doi":"10.1109/VIS54862.2022.00025","DOIUrl":null,"url":null,"abstract":"We introduce Uniform Manifold Approximation with Two-phase Optimization (UMATO), a dimensionality reduction (DR) technique that improves UMAP to capture the global structure of high-dimensional data more accurately. In UMATO, optimization is divided into two phases so that the resulting embeddings can depict the global structure reliably while preserving the local structure with sufficient accuracy. In the first phase, hub points are identified and projected to construct a skeletal layout for the global structure. In the second phase, the remaining points are added to the embedding preserving the regional characteristics of local areas. Through quan-titative experiments, we found that UMATO (1) outperformed widely used DR techniques in preserving the global structure while (2) pro-ducing competitive accuracy in representing the local structure. We also verified that UMATO is preferable in terms of robustness over diverse initialization methods, numbers of epochs, and subsampling techniques.","PeriodicalId":190244,"journal":{"name":"2022 IEEE Visualization and Visual Analytics (VIS)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Uniform Manifold Approximation with Two-phase Optimization\",\"authors\":\"Hyeon Jeon, Hyung-Kwon Ko, S. Lee, Jaemin Jo, Jinwook Seo\",\"doi\":\"10.1109/VIS54862.2022.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce Uniform Manifold Approximation with Two-phase Optimization (UMATO), a dimensionality reduction (DR) technique that improves UMAP to capture the global structure of high-dimensional data more accurately. In UMATO, optimization is divided into two phases so that the resulting embeddings can depict the global structure reliably while preserving the local structure with sufficient accuracy. In the first phase, hub points are identified and projected to construct a skeletal layout for the global structure. In the second phase, the remaining points are added to the embedding preserving the regional characteristics of local areas. Through quan-titative experiments, we found that UMATO (1) outperformed widely used DR techniques in preserving the global structure while (2) pro-ducing competitive accuracy in representing the local structure. We also verified that UMATO is preferable in terms of robustness over diverse initialization methods, numbers of epochs, and subsampling techniques.\",\"PeriodicalId\":190244,\"journal\":{\"name\":\"2022 IEEE Visualization and Visual Analytics (VIS)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Visualization and Visual Analytics (VIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VIS54862.2022.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Visualization and Visual Analytics (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS54862.2022.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们引入了统一流形近似与两相优化(UMATO),一种降维(DR)技术,改进了UMAP,以更准确地捕获高维数据的全局结构。在UMATO中,优化分为两个阶段,以便得到的嵌入既能可靠地描述全局结构,又能以足够的精度保留局部结构。在第一阶段,识别和投影枢纽点,以构建全局结构的骨架布局。在第二阶段,将剩余的点加入到嵌入中,保持局部区域的区域特征。通过定量实验,我们发现UMATO(1)在保留全局结构方面优于广泛使用的DR技术,而(2)在表示局部结构方面具有竞争力的准确性。我们还验证了UMATO在鲁棒性方面优于不同的初始化方法,时代数量和子采样技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uniform Manifold Approximation with Two-phase Optimization
We introduce Uniform Manifold Approximation with Two-phase Optimization (UMATO), a dimensionality reduction (DR) technique that improves UMAP to capture the global structure of high-dimensional data more accurately. In UMATO, optimization is divided into two phases so that the resulting embeddings can depict the global structure reliably while preserving the local structure with sufficient accuracy. In the first phase, hub points are identified and projected to construct a skeletal layout for the global structure. In the second phase, the remaining points are added to the embedding preserving the regional characteristics of local areas. Through quan-titative experiments, we found that UMATO (1) outperformed widely used DR techniques in preserving the global structure while (2) pro-ducing competitive accuracy in representing the local structure. We also verified that UMATO is preferable in terms of robustness over diverse initialization methods, numbers of epochs, and subsampling techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Paths Through Spatial Networks Explaining Website Reliability by Visualizing Hyperlink Connectivity Volume Puzzle: visual analysis of segmented volume data with multivariate attributes VIS 2022 Program Committee The role of extended reality for planning coronary artery bypass graft surgery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1